Inference of Network Dynamics and Architecture in Neural Systems with Data-Driven Methods

使用数据驱动方法推断神经系统中的网络动力学和体系结构

基本信息

  • 批准号:
    1361145
  • 负责人:
  • 金额:
    $ 87.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Neural systems are remarkable in their ability to perform a diversity of coherent tasks such as sensory processing, information transfer, and information storage. Understanding how neuronal circuits interact to form coherent networks is challenging due to their complexity. In this project, the olfactory neural system in insects is studied as a model for vertebrate and human sensory neural circuits because it encodes environmental cues into coherent perceptual objects and electrophysiological recordings can be obtained while the invertebrate animal is behaving. This project will develop mathematical tools to use multineural recordings from the olfactory processing unit in moths to classify robust patterns and to infer a predictive computational model. The computational model will help to reveal the design principles upon which these neuronal circuit networks are built. Simulations generated by the model for complex and dynamic olfactory stimuli will be used to guide electrophysiological and behavioral experiments to quantify how the olfactory network responds, classifies, and recognizes these stimuli.In this project electrophysiological recordings will be used to infer a dynamical network of the antennal lobe, the primary olfactory processing center in insects. For that purpose, a large dataset of neural recordings will be obtained, and mathematical tools that extend state-of-the-art data reduction and structure inference methods will be developed. These tools will be designed to optimally represent the multidimensional time-series data and infer the network structure. In particular, the research will be focused on constructing a decision space from data, spanned by population vectors (neural codes) each representing a stimulus, in which scents can be classified and recognized. By associating with each neuron a dynamical model, the network wiring that produces similar dynamics in the odor space will be inferred using optimization. With the predictive model and stimuli classification methods, this project will resolve questions regarding network design, such as why do the encoding dynamics appear to be robust even for noisy stimuli or how does the network structure, particularly inhibitory connections and feedback, produce robust patterns of neural activity. Optimal values of parameters and those that cause alteration of dynamics will be identified as a result of the study. Additionally, both the output of the model and electrophysiological recordings will be used to predict responses to dynamic inputs, background odor, and mixtures of odors.
神经系统在执行各种连贯任务(如感觉处理、信息传递和信息存储)的能力方面是非常出色的。了解神经元回路如何相互作用以形成连贯的网络是具有挑战性的,因为它们的复杂性。在这个项目中,昆虫的嗅觉神经系统作为脊椎动物和人类感觉神经回路的模型进行研究,因为它将环境线索编码成连贯的感知对象,并且可以在无脊椎动物行为时获得电生理记录。本项目将开发数学工具,利用蛾类嗅觉处理单元的多神经记录对稳健模式进行分类,并推断预测计算模型。计算模型将有助于揭示这些神经元电路网络的设计原则。该模型对复杂的动态嗅觉刺激的模拟将用于指导电生理和行为实验,以量化嗅觉网络如何响应、分类和识别这些刺激。在本项目中,电生理记录将用于推断昆虫触角叶的动态网络。为此,将获得大量神经记录数据集,并开发扩展最先进数据简化和结构推理方法的数学工具。这些工具将被设计为最佳地表示多维时间序列数据和推断网络结构。特别是,研究将集中在从数据中构建决策空间,由每个代表刺激的种群向量(神经代码)跨越,其中气味可以被分类和识别。通过将每个神经元与动态模型相关联,将使用优化来推断在气味空间中产生类似动态的网络布线。通过预测模型和刺激分类方法,该项目将解决有关网络设计的问题,例如为什么编码动态即使对于噪声刺激也表现出鲁棒性,或者网络结构,特别是抑制性连接和反馈,如何产生鲁棒的神经活动模式。作为研究的结果,将确定参数的最佳值和那些引起动态变化的参数。此外,模型的输出和电生理记录都将用于预测对动态输入、背景气味和气味混合物的反应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eli Shlizerman其他文献

Classification of solutions of the forced periodic nonlinear Schrödinger equation
强迫周期非线性薛定谔方程解的分类
  • DOI:
    10.1088/0951-7715/23/9/008
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Eli Shlizerman;V. Rom
  • 通讯作者:
    V. Rom
Transferable polychromatic optical encoder for neural networks
用于神经网络的可转换多色光学编码器
  • DOI:
    10.1038/s41467-025-61338-4
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Minho Choi;Jinlin Xiang;Anna Wirth-Singh;Seung-Hwan Baek;Eli Shlizerman;Arka Majumdar
  • 通讯作者:
    Arka Majumdar
Functional Connectomics from Data: Probabilistic Graphical Models for Neuronal Network of C. elegans
来自数据的功能连接组学:线虫神经元网络的概率图形模型
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hexuan Liu;Jimin Kim;Eli Shlizerman
  • 通讯作者:
    Eli Shlizerman
Hierarchy of bifurcations in the truncated and forced nonlinear Schrödinger model.
截断强制非线性薛定谔模型中的分岔层次。
  • DOI:
    10.1063/1.1831591
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Eli Shlizerman;V. Rom
  • 通讯作者:
    V. Rom
Symmetries Constrain Dynamics in a Family of Balanced Neural Networks
对称性约束平衡神经网络族中的动力学

Eli Shlizerman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eli Shlizerman', 18)}}的其他基金

CRCNS Research Proposal: Collaborative Research: Electrophysiome: comprehensive recording and integrated modeling of the C. elegans nervous system
CRCNS 研究提案:合作研究:电生理组:线虫神经系统的全面记录和集成建模
  • 批准号:
    2113003
  • 财政年份:
    2021
  • 资助金额:
    $ 87.94万
  • 项目类别:
    Standard Grant

相似国自然基金

多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
  • 批准号:
    91418205
  • 批准年份:
    2014
  • 资助金额:
    170.0 万元
  • 项目类别:
    重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
  • 批准号:
    60673142
  • 批准年份:
    2006
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: CCF: CIF: Randomized Experimentation for Systems with Time-varying Dynamics and Network Interference
职业:CCF:CIF:具有时变动态和网络干扰的系统的随机实验
  • 批准号:
    2337796
  • 财政年份:
    2024
  • 资助金额:
    $ 87.94万
  • 项目类别:
    Continuing Grant
CAREER: Theoretical Foundations for Learning Network Dynamics
职业:学习网络动力学的理论基础
  • 批准号:
    2338855
  • 财政年份:
    2024
  • 资助金额:
    $ 87.94万
  • 项目类别:
    Continuing Grant
IHBEM: Empirical analysis of a data-driven multiscale metapopulation mobility network modeling infection dynamics and mobility responses in rural States
IHBEM:对数据驱动的多尺度集合人口流动网络进行实证分析,对农村国家的感染动态和流动反应进行建模
  • 批准号:
    2327862
  • 财政年份:
    2023
  • 资助金额:
    $ 87.94万
  • 项目类别:
    Continuing Grant
Modeling and Analysis of the Spatio-Temporal Dynamics of the Mitochondrial Network
线粒体网络时空动力学的建模与分析
  • 批准号:
    10568586
  • 财政年份:
    2023
  • 资助金额:
    $ 87.94万
  • 项目类别:
Biomarkers of SUDEP risk based on brain-heart-lungs network dynamics
基于脑-心-肺网络动力学的SUDEP风险生物标志物
  • 批准号:
    10561946
  • 财政年份:
    2023
  • 资助金额:
    $ 87.94万
  • 项目类别:
Development of RNA dynamics recording and study of RNA mediated regulatory gene network
RNA动态记录的发展和RNA介导的调控基因网络的研究
  • 批准号:
    23K18108
  • 财政年份:
    2023
  • 资助金额:
    $ 87.94万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
CAREER: Control-Aware System Identification of Heterogenous Multiscale Brain Network Dynamics
职业:异构多尺度脑网络动力学的控制感知系统识别
  • 批准号:
    2239654
  • 财政年份:
    2023
  • 资助金额:
    $ 87.94万
  • 项目类别:
    Standard Grant
Discovering the dynamics of cloud development through the embedding space of a self-supervised neural network
通过自监督神经网络的嵌入空间发现云发展的动态
  • 批准号:
    2886013
  • 财政年份:
    2023
  • 资助金额:
    $ 87.94万
  • 项目类别:
    Studentship
Pulvinar cellular and network dynamics in cognitive control of sensory processes.
感觉过程认知控制中的枕细胞和网络动力学。
  • 批准号:
    10633806
  • 财政年份:
    2023
  • 资助金额:
    $ 87.94万
  • 项目类别:
Network dynamics of sleep-wake states in epilepsy
癫痫睡眠-觉醒状态的网络动力学
  • 批准号:
    10591896
  • 财政年份:
    2023
  • 资助金额:
    $ 87.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了