Bayesian Methods for Protein Fibrillization: Model Integration and Network Dynamics
蛋白质纤维化的贝叶斯方法:模型集成和网络动力学
基本信息
- 批准号:1361425
- 负责人:
- 金额:$ 130.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-10-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project centers on the development of principled statistical methods for understanding the formation and growth of amyloid fibrils, protein aggregates with broad functional and disease-related biological relevance. Protein fibrillization is a basic biophysical phenomenon that underlies problems of immense social concern. These include diseases such as Alzheimer's, cataract, and type II diabetes that are increasingly prevalent in our aging population, as well as economic costs and food security concerns related to prion disease in cattle and other non-human animals. The proposed research has the potential to inform the search for solutions to these serious societal problems, resulting in both economic savings and improvements in individual lives. By developing new predictive and data analytic techniques and validating them with novel experimental data, the project will advance our understanding of the factors that enhance or inhibit protein fibrillization while also producing statistical innovations that can be potentially applied to other problem domains. This project will also provide a unique interdisciplinary training program for graduate and undergraduate students, incorporating novel statistical methods, programming, and experimental techniques.The research project combines modeling techniques from the mathematical social sciences with theoretical and experimental methods from biophysical chemistry, enabling us to approach biological problems in novel ways. The technical innovations of this project are focused on two areas. First, it will develop new approaches to Bayesian model integration in which integrated predictions will be obtained from multiple, potentially non-statistical models in cases with little or no test data. Second, the project will develop novel model families for fibrillization kinetics, extending methods originally developed for social networks to capture interactions between individual proteins in solution over time scales of hours to days. The modeling work will be validated by combination of existing experimental data and by biophysical data collected by the research team. The research will result in new Bayesian techniques for predicting phenomena related to protein aggregation (especially in a high-throughput setting), and for modeling the kinetics of fibrillization process itself. The proposed research will also lead to novel methods for Bayesian integration of predictive models for phenomena with complex dependence, new Bayesian inference, model selection, and simulation techniques for large-scale dynamic network models, and a body of biologically relevant empirical data on protein fibrillization.
该项目的中心是发展原则性的统计方法,以了解淀粉样蛋白原纤维的形成和生长,具有广泛的功能和疾病相关的生物学相关性的蛋白质聚集体。 蛋白质纤维化是一种基本的生物物理现象,是引起广泛社会关注的问题的基础。这些包括老年痴呆症、白内障和II型糖尿病等疾病,这些疾病在我们的老龄化人口中越来越普遍,以及与牛和其他非人类动物中的朊病毒疾病有关的经济成本和粮食安全问题。 拟议的研究有可能为寻求这些严重社会问题的解决方案提供信息,从而节省经济开支并改善个人生活。 通过开发新的预测和数据分析技术,并使用新的实验数据对其进行验证,该项目将促进我们对增强或抑制蛋白质纤维化的因素的理解,同时还产生可潜在应用于其他问题领域的统计创新。本项目还将为研究生和本科生提供一个独特的跨学科培训计划,将新颖的统计方法,编程和实验技术结合在一起。该研究项目将数学社会科学的建模技术与生物物理化学的理论和实验方法相结合,使我们能够以新颖的方式处理生物问题。该项目的技术创新主要集中在两个方面。 首先,它将开发贝叶斯模型集成的新方法,在这种方法中,在很少或没有测试数据的情况下,将从多个潜在的非统计模型中获得集成预测。第二,该项目将开发新的模型家族用于絮凝动力学,扩展最初为社交网络开发的方法,以捕获溶液中单个蛋白质之间在数小时至数天的时间尺度上的相互作用。建模工作将结合现有的实验数据和研究小组收集的生物物理数据进行验证。该研究将产生新的贝叶斯技术,用于预测与蛋白质聚集相关的现象(特别是在高通量环境中),并用于模拟纤维化过程本身的动力学。拟议的研究还将导致贝叶斯集成的预测模型的现象与复杂的依赖性,新的贝叶斯推理,模型选择和模拟技术的大规模动态网络模型,和一个身体的生物相关的经验数据蛋白质fiflatization的新方法。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local Graph Stability in Exponential Family Random Graph Models
指数族随机图模型中的局部图稳定性
- DOI:10.1137/19m1286864
- 发表时间:2021
- 期刊:
- 影响因子:1.9
- 作者:Yu, Yue;Grazioli, Gianmarc;Phillips, Nolan E.;Butts, Carter T.
- 通讯作者:Butts, Carter T.
Phase transitions in the edge/concurrent vertex model
- DOI:10.1080/0022250x.2020.1746298
- 发表时间:2020-04-11
- 期刊:
- 影响因子:1
- 作者:Butts, Carter T.
- 通讯作者:Butts, Carter T.
A dynamic process reference model for sparse networks with reciprocity
具有互易性的稀疏网络动态过程参考模型
- DOI:10.1080/0022250x.2020.1795652
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Butts, Carter T.
- 通讯作者:Butts, Carter T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carter Butts其他文献
Carter Butts的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carter Butts', 18)}}的其他基金
RAPID/Collaborative Research: Agency COVID-19 Risk Communication on Social Media: Characterizing Drivers of Message Retransmission and Engagement
RAPID/协作研究:社交媒体上的机构 COVID-19 风险沟通:描述消息转发和参与的驱动因素
- 批准号:
2027475 - 财政年份:2020
- 资助金额:
$ 130.84万 - 项目类别:
Standard Grant
Statistical Models for Dynamic Networks with Endogenous Vertex Migration
具有内生顶点迁移的动态网络的统计模型
- 批准号:
1826589 - 财政年份:2018
- 资助金额:
$ 130.84万 - 项目类别:
Continuing Grant
Collaborative Research: Online Hazard Communication in the Terse Regime: Measurement, Modeling, and Dynamics
合作研究:简洁制度下的在线危险沟通:测量、建模和动态
- 批准号:
1536319 - 财政年份:2015
- 资助金额:
$ 130.84万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Dynamic Network Models for the Scalable Analysis of Networks with Missing or Sampled Joint Edge/Vertex Evolution
博士论文研究:用于缺失或采样联合边/顶点演化的网络可扩展分析的动态网络模型
- 批准号:
1260798 - 财政年份:2013
- 资助金额:
$ 130.84万 - 项目类别:
Standard Grant
Collaborative Research: Informal Online Communication in Extreme Events: Content, Dynamics, and Structure
合作研究:极端事件中的非正式在线交流:内容、动态和结构
- 批准号:
1031853 - 财政年份:2010
- 资助金额:
$ 130.84万 - 项目类别:
Standard Grant
DHB: Large-scale Spatially Embedded Interpersonal Networks: Measurement, Modeling, and Dynamics
DHB:大规模空间嵌入式人际网络:测量、建模和动力学
- 批准号:
0827027 - 财政年份:2008
- 资助金额:
$ 130.84万 - 项目类别:
Standard Grant
SGER: Collaborative Research: Mapping and Analyzing Emergent Multiorganizational networks in the Hurricane Katrina Responsee
SGER:协作研究:绘制和分析卡特里娜飓风响应中的新兴多组织网络
- 批准号:
0555125 - 财政年份:2006
- 资助金额:
$ 130.84万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods PID 7012435
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性 PID 7012435
- 批准号:
BB/X018563/1 - 财政年份:2024
- 资助金额:
$ 130.84万 - 项目类别:
Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性
- 批准号:
BB/X018660/1 - 财政年份:2024
- 资助金额:
$ 130.84万 - 项目类别:
Research Grant
New methods to capture protein dynamics of the TSC-mTOR signalling axis.
捕获 TSC-mTOR 信号轴蛋白质动态的新方法。
- 批准号:
DE240100992 - 财政年份:2024
- 资助金额:
$ 130.84万 - 项目类别:
Discovery Early Career Researcher Award
Photo-Fragmentation Methods for Single-Molecule Protein Sequencing by Nanopore Mass Spectrometry
纳米孔质谱单分子蛋白质测序的光断裂方法
- 批准号:
10644378 - 财政年份:2023
- 资助金额:
$ 130.84万 - 项目类别:
Development & application of computational methods for the study of protein dynamics with PmHMGR as a model system
发展
- 批准号:
10607487 - 财政年份:2023
- 资助金额:
$ 130.84万 - 项目类别:
Enabling ion Mobility Spectrometry/Mass Spectrometry Methods to Study Conformational Dynamics of Protein Systems
使用离子淌度谱/质谱方法来研究蛋白质系统的构象动力学
- 批准号:
2305173 - 财政年份:2023
- 资助金额:
$ 130.84万 - 项目类别:
Continuing Grant
IIBR Research Methods: Probing the structure, abundance, dynamics, and function of protein complexes within their cellular environment
IIBR 研究方法:探测细胞环境中蛋白质复合物的结构、丰度、动态和功能
- 批准号:
2327468 - 财政年份:2023
- 资助金额:
$ 130.84万 - 项目类别:
Continuing Grant
Development of tissue-specific methods controlling protein stability
控制蛋白质稳定性的组织特异性方法的开发
- 批准号:
23K14331 - 财政年份:2023
- 资助金额:
$ 130.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Advanced bioanalytical mass spectrometry methods for investigating protein covalent binding by reactive metabolites
用于研究反应性代谢物的蛋白质共价结合的先进生物分析质谱方法
- 批准号:
RGPIN-2016-06034 - 财政年份:2022
- 资助金额:
$ 130.84万 - 项目类别:
Discovery Grants Program - Individual
Acquiring a GPU server to accelerate developing deep learning methods to reconstruct protein structures from cryo-EM data
购买 GPU 服务器以加速开发深度学习方法,以从冷冻电镜数据重建蛋白质结构
- 批准号:
10795465 - 财政年份:2022
- 资助金额:
$ 130.84万 - 项目类别: