Collaborative Research: Nanomanufacturing High-performance Graphene-based Electrocatalysts for Efficient Energy Conversion

合作研究:用于高效能量转换的纳米制造高性能石墨烯基电催化剂

基本信息

  • 批准号:
    1363123
  • 负责人:
  • 金额:
    $ 21.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2019-03-31
  • 项目状态:
    已结题

项目摘要

Green and renewable energy generation from water and sunlight holds great promise to solve the present energy and environmental challenges. The fuel cell technology, which utilizes light-induced water-splitting to produce oxygen and hydrogen gases coupled with the electrochemical reaction of these gases, offers a viable approach to electricity generation directly from water and sunlight. However, catalysts are required to facilitate the electrochemistry. Platinum is the state-of-the-art catalyst, but its limited resources and high cost have restricted commercialization of these renewable energy technologies. If properly functionalized, graphene, a single layer of carbon atoms placed in a hexagonal pattern, can replace expensive platinum as a high-performance catalyst for clean and renewable energy generation from water and sunlight. However, its applications to the market are hindered by the lack of approaches for large scale production of high-quality graphene at low-cost. This research is to fill the knowledge gap on manufacturing of high-performance graphene-based catalysts for energy applications. This project is to develop a novel scalable, low-cost, and eco-friendly ball milling technology that directly transforms conventional graphite - or pencil lead - into graphene-based catalysts. This technology will pave the way for more efficient and lower-cost fuel cells and batteries (e.g., lithium-air batteries) for commercial applications.Edge-functionalized graphene has been demonstrated as high-performance electrocatalysts for energy conversion and storage. This project aims at developing a ball milling process that directly converts bulk graphite into edge-functionalized graphene flakes. The molecular structural change during the ball milling is characterized using advanced analytic tools. In addition, molecular simulations of self-exfoliation and edge-functionalization processes are carried out using first-principles methods. Characterization and simulation tasks will be performed together to better understand the basic mechanochemical reactions and graphite-to-graphene structural evolution in ball milling, and to guide the materials and process development. The success of this project will provide a generic approach for scalable nanomanufacturing of graphene-based catalysts for energy devices, including fuel cells and metal-air batteries. Along with these research and development activities, an associated education program will be carried out to provide research training and education opportunities to all levels of students.
利用水和阳光产生的绿色和可再生能源对解决当前的能源和环境挑战具有巨大的希望。燃料电池技术利用光诱导的水分解产生氧气和氢气,再加上这些气体的电化学反应,提供了一种直接从水和阳光发电的可行方法。然而,需要催化剂来促进电化学。铂是最先进的催化剂,但其有限的资源和高昂的成本限制了这些可再生能源技术的商业化。如果功能化得当,石墨烯(一层以六边形图案排列的碳原子)可以取代昂贵的铂,作为一种高性能催化剂,用于从水和阳光中产生清洁和可再生能源。然而,由于缺乏低成本大规模生产高质量石墨烯的方法,其市场应用受到阻碍。这项研究旨在填补能源应用中高性能石墨烯基催化剂制造的知识空白。该项目旨在开发一种新型的可扩展,低成本和环保的球磨技术,直接将传统的石墨或铅笔芯转化为石墨烯基催化剂。这项技术将为更高效、更低成本的燃料电池和电池铺平道路(例如,边缘官能化的石墨烯已被证明是用于能量转换和存储的高性能电催化剂。该项目旨在开发一种球磨工艺,将块状石墨直接转化为边缘功能化的石墨烯薄片。利用先进的分析工具表征了球磨过程中分子结构的变化。此外,自剥离和边缘功能化过程的分子模拟进行了第一性原理方法。表征和模拟任务将一起进行,以更好地了解球磨中的基本机械化学反应和石墨到石墨烯的结构演变,并指导材料和工艺开发。该项目的成功将为能源设备(包括燃料电池和金属空气电池)的石墨烯基催化剂的可扩展纳米制造提供一种通用方法。沿着这些研究和开发活动,将开展一项相关的教育计划,为各级学生提供研究培训和教育机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhenhai Xia其他文献

Coupled thermal–mechanical modeling of carbon fibers reinforced polymer composites for damage detection
  • DOI:
    10.1016/j.compositesb.2011.11.041
  • 发表时间:
    2012-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Thanyawalai Sujidkul;Zhenhai Xia
  • 通讯作者:
    Zhenhai Xia
Biomimetic self-cleaning surfaces: synthesis, mechanism, applications
  • DOI:
    10.1098/rsif.2016.0300
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Quan Xu;Wenwen Zhang;Chenbo Dong;T.S Sreeprasad;Zhenhai Xia
  • 通讯作者:
    Zhenhai Xia
Intrinsic descriptor guided noble metal cathode design for Li‐CO 2 battery
  • DOI:
    10.1002/adma.202302325
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
  • 作者:
    Chang Guo;Fuli Zhang;Xiao Han;Lipeng Zhang;Qian Hou;Lele Gong;Jincheng Wang;Zhenhai Xia;Jianhua Hao;Keyu Xie
  • 通讯作者:
    Keyu Xie
Metal Coordination-Mediated Functional Grading and Self-Healing in Mussel Byssus Cuticle
  • DOI:
    https://doi.org/10.1002/advs.201902043
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Quan Xu;Meng Xu;Chun-Yu Lin;Qiang Zhao;Rui Zhang;Xiaoxiao Dong;Yida Zhang;Shouceng Tian;Yu Tian;Zhenhai Xia
  • 通讯作者:
    Zhenhai Xia
Tailoring nanoprecipitates for ultra-strong high-entropy alloys via machine learning and prestrain aging
通过机器学习和预应变时效定制纳米沉淀物以获得超强高熵合金
  • DOI:
    10.1016/j.jmst.2020.07.009
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Tao Zheng;Xiaobing Hu;Feng He;Qingfeng Wu;Bin Han;Chen Da;Junjie Li;Zhijun Wang;Jincheng Wang;Ji-jung Kai;Zhenhai Xia;C.T. Liu
  • 通讯作者:
    C.T. Liu

Zhenhai Xia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhenhai Xia', 18)}}的其他基金

Collaborative Research: Multifunctional Nanocomposites with Reversible Switch and Controlled Release Surfaces
合作研究:具有可逆开关和控释表面的多功能纳米复合材料
  • 批准号:
    1266319
  • 财政年份:
    2013
  • 资助金额:
    $ 21.92万
  • 项目类别:
    Standard Grant
Integrated Studies of Interfaces in Nanocomposites and Nanoimprinting
纳米复合材料和纳米压印界面的综合研究
  • 批准号:
    1212259
  • 财政年份:
    2011
  • 资助金额:
    $ 21.92万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an AFM/Raman Integrated System for Bio/Nano Functional Materials and Devices Research and Education
MRI:购买用于生物/纳米功能材料和器件研究和教育的 AFM/拉曼集成系统
  • 批准号:
    0923053
  • 财政年份:
    2009
  • 资助金额:
    $ 21.92万
  • 项目类别:
    Standard Grant
Integrated Studies of Interfaces in Nanocomposites and Nanoimprinting
纳米复合材料和纳米压印界面的综合研究
  • 批准号:
    0825990
  • 财政年份:
    2008
  • 资助金额:
    $ 21.92万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 21.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315996
  • 财政年份:
    2024
  • 资助金额:
    $ 21.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
  • 批准号:
    2225900
  • 财政年份:
    2023
  • 资助金额:
    $ 21.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
  • 批准号:
    2225896
  • 财政年份:
    2023
  • 资助金额:
    $ 21.92万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Nanomanufacturing of Vertically Aligned Boron-Nitride-Nanotube Membranes for Energy Conversion
GOALI/合作研究:用于能量转换的垂直排列氮化硼纳米管膜的纳米制造
  • 批准号:
    1762913
  • 财政年份:
    2018
  • 资助金额:
    $ 21.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Wafer-Scale Nanomanufacturing of 2D Atomic Layer Material Heterostructures Through Exfoliation and Transfer
合作研究:通过剥离和转移进行二维原子层材料异质结构的晶圆级纳米制造
  • 批准号:
    1825731
  • 财政年份:
    2018
  • 资助金额:
    $ 21.92万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Nanomanufacturing of Vertically Aligned Boron-Nitride-Nanotube Membranes for Energy Conversion
GOALI/合作研究:用于能量转换的垂直排列氮化硼纳米管膜的纳米制造
  • 批准号:
    1762905
  • 财政年份:
    2018
  • 资助金额:
    $ 21.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Wafer-Scale Nanomanufacturing of 2D Atomic Layer Material Heterostructures Through Exfoliation and Transfer
合作研究:通过剥离和转移进行二维原子层材料异质结构的晶圆级纳米制造
  • 批准号:
    1825256
  • 财政年份:
    2018
  • 资助金额:
    $ 21.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-functional and Multi-Material Additive Nanomanufacturing: Acoustic Field-Assisted Stereolithography (AFS)
合作研究:多功能和多材料增材纳米制造:声场辅助立体光刻(AFS)
  • 批准号:
    1663509
  • 财政年份:
    2017
  • 资助金额:
    $ 21.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Acoustic Field-Assisted Stereolithography for Multi-Material Additive Nanomanufacturing
合作研究:用于多材料增材纳米制造的声场辅助立体光刻技术
  • 批准号:
    1663399
  • 财政年份:
    2017
  • 资助金额:
    $ 21.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了