Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices

合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台

基本信息

  • 批准号:
    2225896
  • 负责人:
  • 金额:
    $ 35.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

The total energy consumption by opto-electronic devices is predicted to surpass the global energy production by the year 2040 unless radical changes are made in their design and manufacturing and large improvements in their performance. This grant supports research that helps to alleviate this challenge by pioneering an innovative manufacturing approach that enables novel and highly efficient three-dimensional chip designs that do not rely on unsustainable miniaturization of the traditional chip architectures. Such three-dimensional architectures are only accessible via new bottom-up manufacturing processes that build and assemble devices in an additive manner via atomically precise and self-aligned positioning of the device components. Current top-down manufacturing does not leverage energy-efficient chemical processes that can significantly reduce manufacturing energy requirements, nor does it benefit from spontaneous molecular and atomic self-organization phenomena that can reduce the size of the chip components. The goal of this research is to develop a continuous, energy-efficient manufacturing platform for bottom-up deposition and high-resolution patterning of opto-electronic device components. The project impacts a broad range of research fields, including electronics, sensing, catalysis, and optical technology as well as training of the future manufacturing workforce. The results of this research positively impact the U.S. economy and society, delivering significant value and growth potential.The key technologies for enabling atomically precise, bottom-up manufacturing of ultra-efficient electronic, photonic and quantum devices depend on area-selective methods for atomic layer deposition and atomic layer etching. This research addresses the main challenges that preclude widespread implementation of these techniques by integrating universal resist materials, in-situ resist regeneration, and universal photo-initiated resist patterning into a single and continuous manufacturing process that is compatible with a variety of substrates and chemistries without significant optimization. Current area-selective atomic layer deposition relies on resist materials and patterning methods that are highly substrate dependent. The hypothesis is that interactions between atomic layer deposition reagents and resists can essentially be independent from the substrate structure and chemistry. This paradigm fundamentally changes the technological approach by generating the resists using universal small-molecule meta-stable species, such as carbenes and nitrenes, instead of substrate-specific resists that are currently being used. The high reactivity of these species overcomes the diffusion problems with resist deposition and regeneration, is applicable to a variety of materials, is useful within a wide range of conditions, and is easily reproduced, as the chemical processes are quantifiable and scalable. Moreover, such small molecule resists are amenable to universal photo-initiated patterning steps that can be performed in-situ.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
预计到2040年,光电子设备的总能耗将超过全球能源生产,除非在设计和制造方面进行根本性的改变,并大幅提高其性能。这项资助支持有助于缓解这一挑战的研究,通过开创一种创新的制造方法,实现新颖和高效的三维芯片设计,而不依赖于传统芯片架构的不可持续的小型化。这种三维架构只能通过新的自下而上的制造工艺来实现,该制造工艺通过设备组件的原子级精确和自对准定位以增材方式构建和组装设备。目前的自上而下的制造没有利用可以显著降低制造能量需求的节能化学工艺,也没有受益于可以减小芯片组件尺寸的自发分子和原子自组织现象。本研究的目标是开发一个连续的,节能的制造平台,用于自下而上的沉积和光电器件组件的高分辨率图案化。该项目影响了广泛的研究领域,包括电子,传感,催化和光学技术以及未来制造业劳动力的培训。这项研究成果对美国经济和社会产生了积极影响,带来了巨大的价值和增长潜力。实现原子级精确、自下而上制造超高效电子、光子和量子器件的关键技术取决于原子层沉积和原子层蚀刻的区域选择性方法。这项研究解决了排除这些技术的广泛实施的主要挑战,通过将通用抗蚀剂材料,原位抗蚀剂再生,和通用光引发的抗蚀剂图案化集成到一个单一的和连续的制造过程中,该过程与各种基板和化学品兼容,无需显着优化。当前的区域选择性原子层沉积依赖于高度依赖于衬底的抗蚀剂材料和图案化方法。该假设是原子层沉积试剂和抗蚀剂之间的相互作用基本上可以独立于衬底结构和化学。该范例通过使用通用的小分子亚稳定物质(例如卡宾和氮宾)而不是目前使用的衬底特异性抗蚀剂来生成抗蚀剂,从根本上改变了技术方法。这些物质的高反应性克服了抗蚀剂沉积和再生的扩散问题,适用于各种材料,在宽范围的条件下是有用的,并且容易再现,因为化学过程是可量化和可缩放的。此外,这种小分子抗蚀剂适合于通用的光引发图案化步骤,可以在situation.This奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Shestopalov其他文献

Viral metagenomics in wild ducks reveals the presence of seadornaviruses in Siberia
  • DOI:
    10.1007/s00705-025-06226-4
  • 发表时间:
    2025-01-27
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Nikita Dubovitskiy;Anastasiya Derko;Arina Loginova;Anna Khozyainova;Evgeny Denisov;Maxim Apanasevich;Alina Kokhanenko;Alexey Druzyaka;Alexander Shestopalov;Kirill Sharshov
  • 通讯作者:
    Kirill Sharshov
Data mining and model-predicting a global disease reservoir for low-pathogenic Avian Influenza (AI) in the wider pacific rim using big data sets
利用大数据集对环太平洋地区低致病性禽流感(AI)的全球疾病库进行数据挖掘和模型预测
  • DOI:
    10.1038/s41598-020-73664-2
  • 发表时间:
    2020-10-08
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Marina Gulyaeva;Falk Huettmann;Alexander Shestopalov;Masatoshi Okamatsu;Keita Matsuno;Duc-Huy Chu;Yoshihiro Sakoda;Alexandra Glushchenko;Elaina Milton;Eric Bortz
  • 通讯作者:
    Eric Bortz
Visualization of the bone marrow biopsy needle track
骨髓活检针迹的可视化
  • DOI:
    10.1002/ajh.24985
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    12.8
  • 作者:
    Shirin Attarian;L. Reed;S. Singh;Alexander Shestopalov;Aditi P. Singh;Anjali Budhathoki;Simon Abi;U. Shah;Salem Kim;K. Bachiashvili;T. Elrafei;Weijuan Li;Conway Yee;Ellen W. Friedman
  • 通讯作者:
    Ellen W. Friedman
Preventive Efficacy of Oxidized Dextran and Pathomorphological Processes in Mouse Lungs in Avian Influenza A/H5N1
氧化右旋糖酐对 A/H5N1 禽流感的预防作用及小鼠肺的病理形态学过程
  • DOI:
    10.1007/s10517-011-1229-8
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    O. V. Potapova;V. Shkurupiy;T. Sharkova;A. Troitskiy;N. G. Lusgina;Alexander Shestopalov
  • 通讯作者:
    Alexander Shestopalov
The Underlying Possibilities and Issues of Community Regenerative Art Projects in the Wake of Natural Disasters
自然灾害后社区再生艺术项目的潜在可能性和问题
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nobuhiro Takemae;Ryota Tsunekuni;Kirill Sharshov;Taichiro Tanikawa;Yuko Uchida;Hiroshi Ito;Kosuke Soda;Tatsufumi Usui;Ivan Sobolev;Alexander Shestopalov;Tsuyoshi Yamaguchi;Junki Mine;Toshihiro Ito;Takehiko Saito;Motohiro Koizumi
  • 通讯作者:
    Motohiro Koizumi

Alexander Shestopalov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Shestopalov', 18)}}的其他基金

MRI: Acquisition of an analytical imaging X-Ray photoelectron spectrometer
MRI:购买分析成像 X 射线光电子能谱仪
  • 批准号:
    1228889
  • 财政年份:
    2012
  • 资助金额:
    $ 35.57万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 35.57万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 35.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326714
  • 财政年份:
    2024
  • 资助金额:
    $ 35.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
  • 批准号:
    2326713
  • 财政年份:
    2024
  • 资助金额:
    $ 35.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315996
  • 财政年份:
    2024
  • 资助金额:
    $ 35.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330195
  • 财政年份:
    2024
  • 资助金额:
    $ 35.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
  • 批准号:
    2330196
  • 财政年份:
    2024
  • 资助金额:
    $ 35.57万
  • 项目类别:
    Standard Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 35.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
  • 批准号:
    2347617
  • 财政年份:
    2023
  • 资助金额:
    $ 35.57万
  • 项目类别:
    Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
  • 批准号:
    2231254
  • 财政年份:
    2023
  • 资助金额:
    $ 35.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了