Collaborative Research: Nanomanufacturing of High-performance Graphene-based Electrocatalysts for Efficient Energy Conversion

合作研究:用于高效能量转换的高性能石墨烯基电催化剂的纳米制造

基本信息

  • 批准号:
    1400274
  • 负责人:
  • 金额:
    $ 21.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

Green and renewable energy generation from water and sunlight holds great promise to solve the present energy and environmental challenges. The fuel cell technology, which utilizes light-induced water-splitting to produce oxygen and hydrogen gases coupled with the electrochemical reaction of these gases, offers a viable approach to electricity generation directly from water and sunlight. However, catalysts are required to facilitate the electrochemistry. Platinum is the state-of-the-art catalyst, but its limited resources and high cost have restricted commercialization of these renewable energy technologies. If properly functionalized, graphene, a single layer of carbon atoms placed in a hexagonal pattern, can replace expensive platinum as a high-performance catalyst for clean and renewable energy generation from water and sunlight. However, its applications to the market are hindered by the lack of approaches for large scale production of high-quality graphene at low-cost. This research is to fill the knowledge gap on manufacturing of high-performance graphene-based catalysts for energy applications. This project is to develop a novel scalable, low-cost, and eco-friendly ball milling technology that directly transforms conventional graphite - or pencil lead - into graphene-based catalysts. This technology will pave the way for more efficient and lower-cost fuel cells and batteries (e.g., lithium-air batteries) for commercial applications.Edge-functionalized graphene has been demonstrated as high-performance electrocatalysts for energy conversion and storage. This project aims at developing a ball milling process that directly converts bulk graphite into edge-functionalized graphene flakes. The molecular structural change during the ball milling is characterized using advanced analytic tools. In addition, molecular simulations of self-exfoliation and edge-functionalization processes are carried out using first-principles methods. Characterization and simulation tasks will be performed together to better understand the basic mechanochemical reactions and graphite-to-graphene structural evolution in ball milling, and to guide the materials and process development. The success of this project will provide a generic approach for scalable nanomanufacturing of graphene-based catalysts for energy devices, including fuel cells and metal-air batteries. Along with these research and development activities, an associated education program will be carried out to provide research training and education opportunities to all levels of students.
利用水和阳光产生的绿色和可再生能源对解决当前的能源和环境挑战具有巨大的希望。燃料电池技术利用光诱导的水分解产生氧气和氢气,再加上这些气体的电化学反应,提供了一种直接从水和阳光发电的可行方法。然而,需要催化剂来促进电化学。铂是最先进的催化剂,但其有限的资源和高昂的成本限制了这些可再生能源技术的商业化。如果功能化得当,石墨烯(一层以六边形图案排列的碳原子)可以取代昂贵的铂,作为一种高性能催化剂,用于从水和阳光中产生清洁和可再生能源。然而,由于缺乏低成本大规模生产高质量石墨烯的方法,其市场应用受到阻碍。这项研究旨在填补能源应用中高性能石墨烯基催化剂制造的知识空白。该项目旨在开发一种新型的可扩展,低成本和环保的球磨技术,直接将传统的石墨或铅笔芯转化为石墨烯基催化剂。这项技术将为更高效、更低成本的燃料电池和电池铺平道路(例如,边缘官能化的石墨烯已被证明是用于能量转换和存储的高性能电催化剂。该项目旨在开发一种球磨工艺,将块状石墨直接转化为边缘功能化的石墨烯薄片。利用先进的分析工具表征了球磨过程中分子结构的变化。此外,自剥离和边缘功能化过程的分子模拟进行了第一性原理方法。表征和模拟任务将一起进行,以更好地了解球磨中的基本机械化学反应和石墨到石墨烯的结构演变,并指导材料和工艺开发。该项目的成功将为能源设备(包括燃料电池和金属空气电池)的石墨烯基催化剂的可扩展纳米制造提供一种通用方法。沿着这些研究和开发活动,将开展一项相关的教育计划,为各级学生提供研究培训和教育机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liming Dai其他文献

Gas expansion-assisted preparation of 3D porous carbon nanosheet for high-performance sodium ion hybrid capacitor
气体膨胀辅助制备高性能钠离子混合电容器用3D多孔碳纳米片
  • DOI:
    10.1016/j.jpowsour.2020.228679
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Litong Zhang;Jingwen Sun;Hongan Zhao;Yuntong Sun;Liming Dai;Fanglei Yao;Yongsheng Fu;Junwu Zhu
  • 通讯作者:
    Junwu Zhu
Advanced Nanocarbons Toward two-Electron Oxygen Electrode Reactions for H2O2 Production and Integrated Energy Conversion.
用于 H2O2 生产和综合能量转换的双电子氧电极反应的先进纳米碳。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    13.3
  • 作者:
    Linjie Zhao;Riqing Yan;Baoguang Mao;Rajib Paul;Wenjie Duan;Liming Dai;Chuangang Hu
  • 通讯作者:
    Chuangang Hu
Origins of Boosted Charge Storage on Heteroatom‐Doped Carbons
杂原子掺杂碳增强电荷存储的起源
  • DOI:
    10.1002/ange.202000319
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cuixia Cui;Yong Gao;Jun Li;Chongyin Yang;Min Liu;Huile Jin;Zhenhai Xia;Liming Dai;Yong Lei;Jichang Wang;Shun Wang
  • 通讯作者:
    Shun Wang
Fe Vacancies Induced Surface FeO6 in Nanoarchitectures of N-Doped Graphene Protected beta-FeOOH: Effective Active Sites for pH-Universal Electrocatalytic Oxygen Reduction
N 掺杂石墨烯保护的 β-FeOOH 纳米结构中 Fe 空位诱导表面 FeO6:pH 通用电催化氧还原的有效活性位点
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Yan Li;Junheng Huang;Xiang Hu;Linlin Bi;Pingwei Cai;Jingchun Jia;Guoliang Chai;Shiqiang Wei;Liming Dai;Zhenhai Wen
  • 通讯作者:
    Zhenhai Wen
Multiscale patterning of graphene oxide and reduced graphene oxide for flexible supercapacitors
用于柔性超级电容器的氧化石墨烯和还原氧化石墨烯的多尺度图案化
  • DOI:
    10.1016/j.carbon.2015.04.046
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Lin Zhu;Hao Chen;Jia Qu;Liming Dai
  • 通讯作者:
    Liming Dai

Liming Dai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liming Dai', 18)}}的其他基金

AIR Option 1: Technology Translation: Low-cost, Metal-free, Carbon-based Oxygen Reduction Catalysts for Highly-efficient Fuel Cells
AIR选项1:技术转化:用于高效燃料电池的低成本、无金属、碳基氧还原催化剂
  • 批准号:
    1343270
  • 财政年份:
    2013
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Multifunctional Nanocomposites with Reversible Switch and Controlled Release Surfaces
合作研究:具有可逆开关和控释表面的多功能纳米复合材料
  • 批准号:
    1266295
  • 财政年份:
    2013
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant
Travel Support for Students to Attend the 10th National Graduate Research Polymer Conference: May 21-24, 2012, Cleveland, Ohio
为学生参加第十届全国研究生研究聚合物会议提供差旅支持:2012 年 5 月 21 日至 24 日,俄亥俄州克利夫兰
  • 批准号:
    1226122
  • 财政年份:
    2012
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant
Materials World Network: New Energy Materials Based on Graphene: Asymmetric Functionalization and Self-Assembly
材料世界网:基于石墨烯的新能源材料:不对称功能化与自组装
  • 批准号:
    1106160
  • 财政年份:
    2011
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant
NIRT: Fabrication of carbon nanotube based dry adhesive surfaces mimicking gecko-feet
NIRT:模仿壁虎脚的碳纳米管干粘合表面的制造
  • 批准号:
    1047655
  • 财政年份:
    2010
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant
The Mechanistic Study on N-doped Carbon Nanomaterials as Highly Efficient Cathode for Fuel Cells
氮掺杂碳纳米材料作为燃料电池高效阴极的机理研究
  • 批准号:
    1000768
  • 财政年份:
    2010
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant
NER: Asymmetric End-functionalization of Nonaligned Carbon Nanotubes For DNA-directed Self-assembling
NER:非排列碳纳米管的不对称末端功能化用于 DNA 引导的自组装
  • 批准号:
    0708055
  • 财政年份:
    2007
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant
NIRT: Fabrication of carbon nanotube based dry adhesive surfaces mimicking gecko-feet
NIRT:模仿壁虎脚的碳纳米管干粘合表面的制造
  • 批准号:
    0609077
  • 财政年份:
    2006
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant
NER: Conducting Polymer Nanocontainers and Conducting Polymer-Carbon Nanotube Junctions
NER:导电聚合物纳米容器和导电聚合物-碳纳米管结
  • 批准号:
    0403130
  • 财政年份:
    2004
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant
NER: Conducting Polymer Nanocontainers and Conducting Polymer-Carbon Nanotube Junctions
NER:导电聚合物纳米容器和导电聚合物-碳纳米管结
  • 批准号:
    0456394
  • 财政年份:
    2004
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315996
  • 财政年份:
    2024
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
  • 批准号:
    2225900
  • 财政年份:
    2023
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
  • 批准号:
    2225896
  • 财政年份:
    2023
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Nanomanufacturing of Vertically Aligned Boron-Nitride-Nanotube Membranes for Energy Conversion
GOALI/合作研究:用于能量转换的垂直排列氮化硼纳米管膜的纳米制造
  • 批准号:
    1762913
  • 财政年份:
    2018
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Wafer-Scale Nanomanufacturing of 2D Atomic Layer Material Heterostructures Through Exfoliation and Transfer
合作研究:通过剥离和转移进行二维原子层材料异质结构的晶圆级纳米制造
  • 批准号:
    1825731
  • 财政年份:
    2018
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Nanomanufacturing of Vertically Aligned Boron-Nitride-Nanotube Membranes for Energy Conversion
GOALI/合作研究:用于能量转换的垂直排列氮化硼纳米管膜的纳米制造
  • 批准号:
    1762905
  • 财政年份:
    2018
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Wafer-Scale Nanomanufacturing of 2D Atomic Layer Material Heterostructures Through Exfoliation and Transfer
合作研究:通过剥离和转移进行二维原子层材料异质结构的晶圆级纳米制造
  • 批准号:
    1825256
  • 财政年份:
    2018
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Multi-functional and Multi-Material Additive Nanomanufacturing: Acoustic Field-Assisted Stereolithography (AFS)
合作研究:多功能和多材料增材纳米制造:声场辅助立体光刻(AFS)
  • 批准号:
    1663509
  • 财政年份:
    2017
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant
Collaborative Research: Acoustic Field-Assisted Stereolithography for Multi-Material Additive Nanomanufacturing
合作研究:用于多材料增材纳米制造的声场辅助立体光刻技术
  • 批准号:
    1663399
  • 财政年份:
    2017
  • 资助金额:
    $ 21.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了