Local Cohomology and D-modules
局部上同调和 D 模
基本信息
- 批准号:1401392
- 负责人:
- 金额:$ 26.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mathematically, this research project falls into the broad category of algebraic geometry, one of the most varied areas of today's mathematics. Fundamentally, algebraic geometry is the study and classification of geometric objects described by algebraic equations through manipulation of the input data using a wide array of mathematical tools. Because of its diversity, algebraic geometry permeates such different branches of science as robotics, cosmology, and computer encryption. The origins of algebraic geometry can be traced to the works of Euclid and Pythagoras. In its modern form, the focus of algebraic geometry is on singularities, which are points that are unusual when compared to their neighbors. Examples of singularities include cusps such as the tip of a funnel cloud, or self-intersections such as the center in a figure-of-eight; they indicate states in which a given physical system becomes anomalous. This project also contributes to the training of the next generation of researchers by engaging graduate as well as undergraduate students in research. The main focus of this project is the study of singularities through cohomological methods. To a singularity defined by a set of polynomial equations one may attach several invariants; these may be of discrete type (such as the number of branches of a curve meeting in a point) or of continuous nature (such as the space of all vector fields tangent to the singularity). If one considers a family of singularities, such invariants behave in interesting ways: on one side, at special members of the family they "jump" (that is, get larger in some sense), and such jumps are often accompanied by an appropriate nonzero local cohomology group. The singularities where jumps occur typically exhibit worse behavior than their neighbors. On the other side, near typical members of the family, the invariants often deform according to so-called "hypergeometric" differential equations. One component of this project investigates, using local cohomology and combinatorial methods, jumps and solutions of the appearing hypergeometric differential equations. The other part of the project is concerned with the study of specific invariants in families of singularities derived through either calculus (the Gauss--Manin connection and Bernstein--Sato polynomial), counting techniques (the Igusa zeta function), or deformations (cohomology of the Milnor fiber), and their interplay.
从数学上讲,这项研究属于代数几何的广泛范畴,这是当今数学中最多种多样的领域之一。从根本上说,代数几何是通过使用一系列广泛的数学工具处理输入数据来研究和分类由代数方程描述的几何对象。由于它的多样性,代数几何渗透到不同的科学分支,如机器人学、宇宙学和计算机加密。代数几何的起源可以追溯到欧几里得和毕达哥拉斯的作品。在其现代形式中,代数几何的重点是奇点,奇点是与其相邻的点相比不寻常的点。奇点的例子包括尖点,如漏斗云的尖端,或自交点,如八字形中的中心;它们指示给定物理系统变得异常的状态。该项目还通过吸引研究生和本科生参与研究,为培养下一代研究人员做出了贡献。这个项目的主要焦点是用上同调方法研究奇点。对于由一组多项式方程定义的奇点,可以附加几个不变量;这些不变量可以是离散型的(例如曲线在一点相交的分支的数目),也可以是连续的(例如与奇点相切的所有向量场的空间)。如果考虑一族奇点,这样的不变量以有趣的方式表现:一方面,在该族的特殊成员处,它们“跳跃”(即,在某种意义上变得更大),并且这种跳跃通常伴随着适当的非零局部上同调群。发生跳跃的奇点通常表现出比它们的邻居更糟糕的行为。另一方面,在这个家族的典型成员附近,不变量通常按照所谓的“超几何”微分方程变形。这个项目的一个组成部分,利用局部上同调和组合方法,研究出现的超几何微分方程的跳跃和解。该项目的另一部分涉及通过微积分(Gauss-Manin连接和Bernstein-Sato多项式)、计数技术(Igusa Zeta函数)或变形(Milnor纤维的上同调)以及它们之间的相互作用来研究奇异族中的特定不变量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hans Ulrich Walther其他文献
Hans Ulrich Walther的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hans Ulrich Walther', 18)}}的其他基金
Singularities, Toric Geometry and Differential Equations
奇点、环面几何和微分方程
- 批准号:
1762086 - 财政年份:2018
- 资助金额:
$ 26.82万 - 项目类别:
Standard Grant
Cohomology, D-modules and singularities
上同调、D 模和奇点
- 批准号:
0901123 - 财政年份:2009
- 资助金额:
$ 26.82万 - 项目类别:
Standard Grant
Local Cohomology in Algebra and Geometry
代数和几何中的局部上同调
- 批准号:
0555319 - 财政年份:2006
- 资助金额:
$ 26.82万 - 项目类别:
Standard Grant
D-modules, Groebner Bases and Toric Geometry
D 模、Groebner 基底和复曲面几何
- 批准号:
0100509 - 财政年份:2001
- 资助金额:
$ 26.82万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Local Cohomology, de Rham Cohomology and D-modules
职业:局部上同调、de Rham 上同调和 D 模
- 批准号:
1752081 - 财政年份:2018
- 资助金额:
$ 26.82万 - 项目类别:
Continuing Grant
A research on properties on local cohomology modules from the approach of category theory.
从范畴论的角度研究局部上同调模的性质。
- 批准号:
26400044 - 财政年份:2014
- 资助金额:
$ 26.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Common threads in the theories of Local Cohomology, D-modules and Tight Closure and their interactions
局部上同调、D 模和紧闭理论的共同点及其相互作用
- 批准号:
EP/J005436/1 - 财政年份:2012
- 资助金额:
$ 26.82万 - 项目类别:
Research Grant
Study on the properties on local cohomology modules from view points of wide cohomology theories
从广义上同调理论的角度研究局部上同调模的性质
- 批准号:
23540048 - 财政年份:2011
- 资助金额:
$ 26.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cohomology, D-modules and singularities
上同调、D 模和奇点
- 批准号:
0901123 - 财政年份:2009
- 资助金额:
$ 26.82万 - 项目类别:
Standard Grant
Study on the structures of local cohomology modules
局部上同调模的结构研究
- 批准号:
20540043 - 财政年份:2008
- 资助金额:
$ 26.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Shimura Varieties, Galois Modules and the Determinant of Cohomology
Shimura 簇、伽罗瓦模和上同调行列式
- 批准号:
0201140 - 财政年份:2002
- 资助金额:
$ 26.82万 - 项目类别:
Continuing Grant
Modules Over Commutative Rings and Cohomology Operations
交换环上的模和上同调运算
- 批准号:
0230770 - 财政年份:2002
- 资助金额:
$ 26.82万 - 项目类别:
Continuing Grant
Modules Over Commutative Rings and Cohomology Operations
交换环上的模和上同调运算
- 批准号:
9970375 - 财政年份:1999
- 资助金额:
$ 26.82万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research on Elliptic Genera, Elliptic Cohomology and Modules over the Steenrod Algebra
数学科学:椭圆属、椭圆上同调和Steenrod代数模的研究
- 批准号:
9202041 - 财政年份:1992
- 资助金额:
$ 26.82万 - 项目类别:
Continuing Grant