Study on the structures of local cohomology modules

局部上同调模的结构研究

基本信息

  • 批准号:
    20540043
  • 负责人:
  • 金额:
    $ 2.75万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2008
  • 资助国家:
    日本
  • 起止时间:
    2008 至 2010
  • 项目状态:
    已结题

项目摘要

The main researcher supported by the grant proved the following result : if an ideal I of a noetherian local ring A has dimension one, then M (A, I) cofis Abelian, where M (A, I) cof is the subcategory consisting of I-cofinite modules in the category M (A) of all A-modules.
主要研究人员证明了如下结果:如果Notherian局部环A的理想I有一维,则M(A,I)Cofis Abelian,其中M(A,I)Cof是所有A-模的范畴M(A)中由I-余有限模组成的子范畴。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
三角圏と導来圏,その余有限加群への応用III
三角范畴和派生范畴及其在余有限模中的应用 III
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    川崎謙一郎(高橋一嘉氏との共同発表;発表者川崎謙一郎);川崎謙一郎;川崎謙一郎;川崎謙一郎;川崎謙一郎;川崎謙一郎;川崎謙一郎
  • 通讯作者:
    川崎謙一郎
局所コホモロジー加群の構造に関する研究
局部上同调模的结构研究
A characterization of cofinite complexes over complete Gorenstein domains
完整 Gorenstein 域上的余有限配合物的表征
局所コホモロジー加群/余有限加群やアーベル圏に関する最近の話題
关于局部上同调模/余有限模和阿贝尔范畴的最新主题
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Hirokado;H. Ito;N;Saito;福間慶明;H.Ito;川崎謙一郎;福間慶明;H. Ito;川崎謙一郎;福間 慶明;Hiroyuki Ito;川崎謙一郎;H.Ito;川崎謙一郎
  • 通讯作者:
    川崎謙一郎
余有限加群からなる圏のアーベル性から得られるいくつかの系
一些系统是从由余有限模组成的类别的阿贝尔性质获得的
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Hirokado;H. Ito;N;Saito;福間慶明;H.Ito;川崎謙一郎;福間慶明;H. Ito;川崎謙一郎;福間 慶明;Hiroyuki Ito;川崎謙一郎;H.Ito;川崎謙一郎;Hiroyuki Ito;川崎謙一郎;H.Ito;川崎謙一郎;Hiroyuki Ito;川崎謙一郎;川崎謙一郎;伊藤浩行;川崎謙一郎;川崎謙一郎;Hiroyuki Ito;川崎謙一郎;Ken-ichiroh Kawasaki;伊藤浩行;Hiroyuki Ito;川崎謙一郎;川崎謙一郎;伊藤浩行;Hiroyuki Ito;伊藤浩行;川崎謙一郎;Hiroyuki Ito;Ken-ichiroh Kawasaki;伊藤浩行;川崎謙一郎
  • 通讯作者:
    川崎謙一郎
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAWASAKI Ken-ichiroh其他文献

KAWASAKI Ken-ichiroh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

数学知识抽象性与数学焦虑的关联机制研究
  • 批准号:
    JCZRQN202500563
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
《大术》译注与研究
  • 批准号:
    12226503
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
第十六届全国代数学学术会议
  • 批准号:
    12242101
  • 批准年份:
    2022
  • 资助金额:
    15.00 万元
  • 项目类别:
    专项项目
《数学译林》
  • 批准号:
    12226508
  • 批准年份:
    2022
  • 资助金额:
    15.0 万元
  • 项目类别:
    数学天元基金项目
数学话剧图书《让我们从几何原本谈起》的出版
  • 批准号:
    12226507
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
数学文化杂志
  • 批准号:
    12226502
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
《数学译林》
  • 批准号:
    12126509
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
行递增杨表上的组合和代数问题研究
  • 批准号:
    2021JJ40186
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
结构数学在现代数学中的渗透与应用
  • 批准号:
    12171137
  • 批准年份:
    2021
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Standard Grant
Conference: CAAGTUS (Commutative Algebra and Algebraic Geometry in TUcSon)
会议:CAAGTUS(TUcSon 中的交换代数和代数几何)
  • 批准号:
    2412921
  • 财政年份:
    2024
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
  • 批准号:
    2302262
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Standard Grant
Conference: Commutative Algebra in The South
会议:南方的交换代数
  • 批准号:
    2302682
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Standard Grant
Homological Commutative Algebra and Symmetry
同调交换代数和对称性
  • 批准号:
    2302341
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Continuing Grant
Conference: Workshop in Commutative Algebra
会议:交换代数研讨会
  • 批准号:
    2317351
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Standard Grant
Commutative algebra in algebraic geometry and algebraic combinatorics
代数几何和代数组合中的交换代数
  • 批准号:
    2246962
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Standard Grant
Measuring singularities in commutative algebra
测量交换代数中的奇点
  • 批准号:
    2302430
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: Derived Categories in Birational Geometry, Enumerative Geometry, and Non-commutative Algebra
合作研究:双有理几何、枚举几何和非交换代数中的派生范畴
  • 批准号:
    2302263
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Standard Grant
Multigraded commutative algebra and the geometry of syzygies
多级交换代数和 syzygies 几何
  • 批准号:
    2302373
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了