Local Cohomology in Algebra and Geometry
代数和几何中的局部上同调
基本信息
- 批准号:0555319
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator intends to study problems from the theory of localcohomology that arise in interacting areas of algebraic geometry,commutative algebra, and through combinatorial aspects of the theoryof partial differential equations. These problems include questionsthat relate to structural properties of rings and modules, as well asthose aimed at obtaining quantitative results. A common link to theproposed study is local cohomology, a concept that ties togetheralgebraic geometry, D-module theory, and commutative algebra. Theinvestigator will specifically explore the interaction of certainnon-vanishing local modules with the structure of the solutions ofA-hypergeometric systems, with a view towards jump phenomena. Arelated study is aimed at understanding the Bernstein--Sato polynomialand jump loci of local systems along hyperplane arrangements. In adifferent direction, the investigator will study a basic question ofLyubeznik addressing finiteness properties of local cohomology.This is a computer-aided project in the mathematical area known asalgebraic geometry. During the 20-th century, algebraic geometry haschanged its nature from analytic geometry into a much more complexscience. The result is a complicated but powerful method for studyingcurves, surfaces and other geometric objects defined bypolynomials. This modern approach to geometry allows mathematicians touse geometric techniques and intuition in many other situations,including (but not restricted to) robot motion planning, computervision, statistics, and computer security. The methods used inalgebraic geometry are of a very wide range. The investigator's workconcentrates on the applications of differential calculus and computerpower to the subject, thus combining geometry, algebra, calculus andmodern technology in his work. As he continues to uncover theinterplay of these objects by theoretical and computational means,algebraic geometry is becoming ever more valuable as a tool in otherparts of mathematics, physics and engineering.
研究者打算从局部同调理论和偏微分方程论的组合方面来研究在代数几何、交换代数的相互作用领域中出现的问题。这些问题包括与环和模的结构性质有关的问题,以及那些旨在获得定量结果的问题。与所提出的研究有一个共同的联系是局部上同调,这是一个将代数几何、D-模理论和交换代数联系在一起的概念。研究者将具体探讨某些非零局部模与超几何系统解的结构之间的相互作用,以期研究跳跃现象。一个相关的研究旨在了解沿超平面排列的局部系统的Bernstein-Sato多项式和跳跃轨迹。在不同的方向上,研究者将研究Lyubeznik关于局部上同调的有限性质的一个基本问题。这是一个数学领域的计算机辅助项目,称为代数几何。在20世纪,代数几何的性质已经从解析几何转变为一门复杂得多的科学。其结果是一种复杂但强大的方法,用于研究由多项式定义的曲线、曲面和其他几何对象。这种现代的几何方法允许数学家在许多其他情况下使用几何技术和直觉,包括(但不限于)机器人运动规划、计算机视觉、统计学和计算机安全。代数几何中使用的方法范围很广。这位研究人员的工作集中在微积分和计算机能力的应用上,从而将几何、代数、微积分和现代技术结合在他的工作中。随着他继续通过理论和计算手段揭示这些对象之间的相互作用,代数几何作为数学、物理和工程的其他部分的工具正变得越来越有价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hans Ulrich Walther其他文献
Hans Ulrich Walther的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hans Ulrich Walther', 18)}}的其他基金
Singularities, Toric Geometry and Differential Equations
奇点、环面几何和微分方程
- 批准号:
1762086 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
D-modules, Groebner Bases and Toric Geometry
D 模、Groebner 基底和复曲面几何
- 批准号:
0100509 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Free Probability and Cohomology in von Neumann Algebra Theory.
冯诺依曼代数理论中的自由概率和上同调。
- 批准号:
1762360 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Rigidity, Cohomology, and Approximate Embeddings in von Neumann Algebra Factors
冯诺依曼代数因子中的刚性、上同调和近似嵌入
- 批准号:
1700344 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
Local Cohomology in Commutative Algebra and Algebraic Geometry
交换代数和代数几何中的局部上同调
- 批准号:
1700748 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Commutative Algebra: Set-Theoretic Complete Intersections, Local Cohomology, Free Resolutions, and Rees Rings
交换代数:集合论完全交集、局部上同调、自由解析和里斯环
- 批准号:
1601865 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
Multiplicities and Local Cohomology in Commutative Algebra
交换代数中的重数和局部上同调
- 批准号:
0500588 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing Grant
Poisson Structures and Lie Algebra Cohomology
泊松结构和李代数上同调
- 批准号:
9803624 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Research on Elliptic Genera, Elliptic Cohomology and Modules over the Steenrod Algebra
数学科学:椭圆属、椭圆上同调和Steenrod代数模的研究
- 批准号:
9202041 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Local Algebra and Global Cohomology
数学科学:局部代数和全局上同调
- 批准号:
9201363 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Standard Grant
Lie Algebra Cohomology and the Representations of SemisimpleLie Groups
李代数上同调和半单李群的表示
- 批准号:
7714863 - 财政年份:1977
- 资助金额:
-- - 项目类别:
Standard Grant