Domain decomposition methods based on proper generalized decomposition for parametric heterogeneous problems

基于适当广义分解的参数异构问题域分解方法

基本信息

  • 批准号:
    EP/V027603/1
  • 负责人:
  • 金额:
    $ 31.15万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Heterogeneous (or multi-physics) problems are very common in engineering and scientific applications. They typically arise when different phenomena occur in two or more subregions of the domain of interest such as, e.g., in the filtration of fluids through porous media in geophysical or industrial applications, in tissue perfusion in biomedicine, in the interactions between fluids and elastic structures. In such cases, at least two different sets of equations (e.g., incompressible fluid equations and elasticity equations) must be defined in each subregion and they must be suitably coupled into a global heterogeneous problem to correctly describe the physical system.Solving these problems numerically is computationally demanding due to the need to accurately approximate all the different involved physical phenomena. The computational complexity increases even further when these problems must be solved several times for optimisation purposes as it occurs, e.g., in virtual design. Indeed, optimisation requires identifying the optimal values of several parameters used to describe various characteristics of the system such as geometrical features (e.g., the dimension of a structural element), material properties (e.g., the permeability of a porous medium) or process parameters (e.g., the inflow pressure in a filtering device). This is typically done by testing a large number of possible configurations, which dramatically increases the computational cost of numerical simulations and limits their practical applicability.In this project, we will study a novel mathematical framework to make the numerical treatment of parametric heterogeneous problems more affordable by combining two mathematical methods: Domain Decomposition (DD) and Proper Generalized Decomposition (PGD).The new method uses DD techniques to split multi-parametric heterogeneous problems into families of simpler subproblems of the same nature and with a reduced number of parameters. The solutions of these local subproblems can be computed by PGD that provides an efficient strategy to handle parameters of various nature in a unified manner. Finally, DD can 'compose' the local solutions to obtain the global 'general solution' of the original problem that accounts for all significant values of the parameters. Identifying effective and robust ways of 'composing' local solutions is not an easy task especially in the case of heterogeneous problems and it constitutes an open challenging research question in the PGD context that we address in this project.We will lay the foundation of the DD-PGD method for heterogeneous problems and develop algorithms that will allow us to tackle the computational challenges encountered in the virtual design of multi-physics multi-parameter systems in various applications, e.g., membrane filtration processes.
异构(或多物理)问题在工程和科学应用中非常常见。它们通常在感兴趣的域的两个或更多个子区域中发生不同现象时出现,例如,在地球物理或工业应用中通过多孔介质过滤流体,在生物医学中的组织灌注,在流体和弹性结构之间的相互作用中。在这种情况下,至少两组不同的方程(例如,不可压缩流体方程和弹性方程)必须在每个子区域中定义,并且它们必须适当地耦合到全局非均匀问题中以正确地描述物理系统。当这些问题必须在其发生时为了优化目的而多次求解时,计算复杂性甚至进一步增加,例如,在虚拟设计中。实际上,优化需要识别用于描述系统的各种特性(诸如几何特征(例如,结构元件的尺寸),材料特性(例如,多孔介质的渗透性)或工艺参数(例如,过滤装置中的流入压力)。这通常是通过测试大量可能的配置来完成的,这大大增加了数值模拟的计算成本,限制了它们的实用性。在这个项目中,我们将研究一种新的数学框架,通过结合两种数学方法,使参数非均匀问题的数值处理更经济实惠:区域分解(DD)和适当的广义分解(PGD):新方法使用DD技术分裂成家庭的多参数异构问题的简单的子问题相同的性质和减少参数的数量。这些局部子问题的解决方案可以计算PGD,提供了一个有效的策略,以统一的方式处理各种性质的参数。最后,DD可以“组合”的局部解决方案,以获得全球的“一般解决方案”的原始问题,占所有重要的参数值。识别有效的和鲁棒的“组合”本地解决方案的方法不是一件容易的事情,特别是在异构问题的情况下,它构成了一个开放的具有挑战性的研究问题,在PGD的背景下,我们在这个项目中解决。我们将奠定基础的DD-PGD方法的异构问题,并开发算法,使我们能够解决在虚拟设计中遇到的计算挑战,多-物理多参数系统在各种应用中,例如,膜过滤工艺。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Domain Decomposition Methods in Science and Engineering XXVII
科学与工程中的领域分解方法二十七
  • DOI:
    10.1007/978-3-031-50769-4_18
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Discacciati M
  • 通讯作者:
    Discacciati M
Optimized Schwarz methods for the time-dependent Stokes-Darcy coupling
用于瞬态 Stokes-Darcy 耦合的优化 Schwarz 方法
An overlapping domain decomposition method for the solution of parametric elliptic problems via proper generalized decomposition
  • DOI:
    10.1016/j.cma.2023.116484
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Discacciati;B. Evans;M. Giacomini
  • 通讯作者:
    M. Discacciati;B. Evans;M. Giacomini
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marco Discacciati其他文献

Modeling dimensionally-heterogeneous problems: analysis, approximation and applications
  • DOI:
    10.1007/s00211-011-0387-y
  • 发表时间:
    2011-06-24
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Pablo J. Blanco;Marco Discacciati;Alfio Quarteroni
  • 通讯作者:
    Alfio Quarteroni
Inhomogeneous wave equation with emt/em-dependent singular coefficients
具有依赖于 emt/em 的奇异系数的非齐次波动方程
  • DOI:
    10.1016/j.jde.2022.02.039
  • 发表时间:
    2022-05-15
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Marco Discacciati;Claudia Garetto;Costas Loizou
  • 通讯作者:
    Costas Loizou

Marco Discacciati的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

长白山垂直带土壤动物多样性及其在凋落物分解和元素释放中的贡献
  • 批准号:
    41171207
  • 批准年份:
    2011
  • 资助金额:
    85.0 万元
  • 项目类别:
    面上项目
松嫩草地土壤动物多样性及其在凋落物分解中作用和物质能量收支研究
  • 批准号:
    40871120
  • 批准年份:
    2008
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Efficient Conservative High-Order Solution-Flux Domain Decomposition Methods and Local Refinements for Flows in Porous Media and Electromagnetics
多孔介质和电磁学中流动的高效保守高阶解-通量域分解方法和局部细化
  • 批准号:
    RGPIN-2022-04571
  • 财政年份:
    2022
  • 资助金额:
    $ 31.15万
  • 项目类别:
    Discovery Grants Program - Individual
Domain Decomposition Methods for Coupled Models of Non-Newtonian Fluids and Solid Structures
非牛顿流体与固体结构耦合模型的域分解方法
  • 批准号:
    2207971
  • 财政年份:
    2022
  • 资助金额:
    $ 31.15万
  • 项目类别:
    Standard Grant
Linear Equations Solver for Domain Decomposition Based Parallel Finite Element Methods with Inconsistent Mesh
具有不一致网格的基于域分解的并行有限元方法的线性方程求解器
  • 批准号:
    20K19813
  • 财政年份:
    2020
  • 资助金额:
    $ 31.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Domain decomposition methods for electronic structure calculations
电子结构计算的域分解方法
  • 批准号:
    411724963
  • 财政年份:
    2019
  • 资助金额:
    $ 31.15万
  • 项目类别:
    Research Grants
Collaborative Research: Multilevel Methods for Optimal Control of Partial Differential Equations and Optimization-Based Domain Decomposition
协作研究:偏微分方程最优控制的多级方法和基于优化的域分解
  • 批准号:
    1913201
  • 财政年份:
    2019
  • 资助金额:
    $ 31.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Multilevel Methods for Optimal Control of Partial Differential Equations and Optimization-Based Domain Decomposition
协作研究:偏微分方程最优控制的多级方法和基于优化的域分解
  • 批准号:
    1913004
  • 财政年份:
    2019
  • 资助金额:
    $ 31.15万
  • 项目类别:
    Standard Grant
Global-in-Time Domain Decomposition Methods for Evolution Partial Differential Equations with Applications to Flow and Transport in Fractured Porous Media
演化偏微分方程的全局时域分解方法及其在裂隙多孔介质流动和输运中的应用
  • 批准号:
    1912626
  • 财政年份:
    2019
  • 资助金额:
    $ 31.15万
  • 项目类别:
    Standard Grant
Optimized Domain Decomposition Methods for Wave Propagation in Complex Media
复杂介质中波传播的优化域分解方法
  • 批准号:
    1908602
  • 财政年份:
    2019
  • 资助金额:
    $ 31.15万
  • 项目类别:
    Continuing Grant
International Workshop on Domain Decomposition Methods for PDEs
偏微分方程域分解方法国际研讨会
  • 批准号:
    1543876
  • 财政年份:
    2015
  • 资助金额:
    $ 31.15万
  • 项目类别:
    Standard Grant
Domain Decomposition Methods: Algorithms and Theory
领域分解方法:算法和理论
  • 批准号:
    1522736
  • 财政年份:
    2015
  • 资助金额:
    $ 31.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了