Logarithmic geometry and its applications to moduli and birational geometry
对数几何及其在模量和双有理几何中的应用
基本信息
- 批准号:1403271
- 负责人:
- 金额:$ 14.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2015-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The work of this proposal lies at the intersection of string theory from physics and algebraic geometry. In string theory, particles are replaced by small loops of strings moving in space-time. Conjecturally, the space-time is ten-dimensional. Over the four-dimensional space-time we are aware of, there is a six-dimensional fibration whose fiber is known as the Calabi-Yau manifold. The Gromov-Witten invariants serve as important ingredients in the study of Calabi-Yau manifolds and string theory. Since the discovery of the Gromov-Witten invariants, new insights are developing rapidly, which also provide many interesting new approaches to classical problems from algebraic geometry. The calculation of Gromov-Witten invariants is extremely difficult to perform on Calabi-Yau manifolds. This project aims to develop a new calculation method of Gromov-Witten invariants, and to apply the developments to produce new understandings in algebraic geometry.The major focus of this project is to study the degeneration of Gromov-Witten theory. This will be carried out from the perspective of stable logarithmic maps developed jointly with Dan Abramovich, and independently by Mark Gross and Bernd Siebert. In particular, the PI proposes to prove a general gluing formula of logarithmic Gromov-Witten invariants. The theory of stable logarithmic maps also provides a useful tool for the study of rational curves on quasi-projective varieties. Another part of this project is to generalize Mori's theory in the non-proper cases, and to have a further understanding of the birational geometry of quasi-projective varieties.
这个建议的工作在于弦理论从物理学和代数几何的交叉点。在弦理论中,粒子被在时空中运动的小弦环所取代。从理论上讲,时空是十维的。在我们所知道的四维时空中,有一个六维纤维化,其纤维被称为卡-丘流形。Gromov-Witten不变量是卡-丘流形和弦理论研究中的重要组成部分。自从Gromov-Witten不变量被发现以来,新的见解正在迅速发展,这也为代数几何中的经典问题提供了许多有趣的新方法。Gromov-Witten不变量的计算在Calabi-Yau流形上是非常困难的。本计画旨在发展一种新的Gromov-Witten不变量的计算方法,并应用其发展来产生代数几何的新认识,主要研究Gromov-Witten理论的退化。这将从与Dan Abramovich共同开发的稳定对数图的角度进行,并由Mark Gross和Bernd Siebert独立开发。特别是,PI提出证明对数Gromov-Witten不变量的一般胶合公式。稳定对数映射理论也为研究拟投射簇上的有理曲线提供了一个有用的工具。本项目的另一部分是在非真情形下推广Mori的理论,并进一步理解拟投射簇的双有理几何。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Strong approximation over function fields
函数域的强近似
- DOI:10.1090/jag/706
- 发表时间:2018
- 期刊:
- 影响因子:1.8
- 作者:Chen, Qile;Zhu, Yi
- 通讯作者:Zhu, Yi
?-curves on log smooth varieties
对数平滑品种的 ? 曲线
- DOI:10.1515/crelle-2017-0028
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Chen, Qile;Zhu, Yi
- 通讯作者:Zhu, Yi
On the Irreducibility of the Space of Genus Zero Stable Log Maps to Wonderful Compactifications
论属零稳定对数映射空间奇妙紧化的不可约性
- DOI:10.1093/imrn/rnv232
- 发表时间:2016
- 期刊:
- 影响因子:1
- 作者:Chen, Qile;Zhu, Yi
- 通讯作者:Zhu, Yi
Boundedness of the space of stable logarithmic maps
稳定对数映射空间的有界性
- DOI:10.4171/jems/728
- 发表时间:2017
- 期刊:
- 影响因子:2.6
- 作者:Abramovich, Dan;Chen, Qile;Marcus, Steffen;Wise, Jonathan
- 通讯作者:Wise, Jonathan
$$\mathbb {A}^1$$ A 1 -connected varieties of rank one over nonclosed fields
$$mathbb {A}^1$$ 非闭域上的一阶 1 连通簇
- DOI:10.1007/s00208-015-1257-1
- 发表时间:2016
- 期刊:
- 影响因子:1.4
- 作者:Chen, Qile;Zhu, Yi
- 通讯作者:Zhu, Yi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qile Chen其他文献
DDR1 activation in macrophage promotes IPF by regulating NLRP3 inflammasome and macrophage reaction
巨噬细胞中DDR1激活通过调节NLRP3炎症小体和巨噬细胞反应促进IPF
- DOI:
10.1016/j.intimp.2022.109294 - 发表时间:
2022 - 期刊:
- 影响因子:5.6
- 作者:
Hao Wang;Yuhuan Wen;Linjie Wang;Jing Wang;Honglv Chen;Jiaqian Chen;Jieying Guan;Shiyun Xie;Qile Chen;Yongta Wang;Ailin Tao;Yanhua Du;Jie Yan - 通讯作者:
Jie Yan
Chow Quotients of Toric Varieties as Moduli of Stable Log Maps
作为稳定对数图模的 Toric 簇的 Chow 商
- DOI:
10.2140/ant.2013.7.2313 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Qile Chen;M. Satriano - 通讯作者:
M. Satriano
Punctured logarithmic R-maps
穿孔对数 R 映射
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Qile Chen;F. Janda;Y. Ruan - 通讯作者:
Y. Ruan
Multiple non-covalent bonds reinforced pH/glucose-responsive alginate-stabilized Pickering emulsion for diacylated anthocyanin intestinal delivery
多重非共价键增强的pH/葡萄糖响应性海藻酸盐稳定的皮克林乳液用于二酰化花青素的肠道递送
- DOI:
10.1016/j.ijbiomac.2025.142721 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:8.500
- 作者:
Qile Chen;Tong Ye;Shujuan Yang;Linwang Fan;Chaonan Shang;Yuhong Feng;Jiacheng Li;Yujuan Wang;Gaobo Yu;Jun Dai - 通讯作者:
Jun Dai
LOGARITHMIC STABLE MAPS TO DELIGNE – FALTINGS PAIRS II
设计对数稳定映射 – FALTINGS PAIRS II
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
D. Abramovich;Qile Chen - 通讯作者:
Qile Chen
Qile Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qile Chen', 18)}}的其他基金
Logarithmic Geometry and the Gauged Linear Sigma Model
对数几何和测量线性西格玛模型
- 批准号:
2001089 - 财政年份:2020
- 资助金额:
$ 14.46万 - 项目类别:
Standard Grant
Moduli of Stable Log Maps and Applications
稳定日志图模及其应用
- 批准号:
1700682 - 财政年份:2017
- 资助金额:
$ 14.46万 - 项目类别:
Continuing Grant
Logarithmic geometry and its applications to moduli and birational geometry
对数几何及其在模量和双有理几何中的应用
- 批准号:
1560830 - 财政年份:2015
- 资助金额:
$ 14.46万 - 项目类别:
Standard Grant
MEGA 2013 (Effective Methods in Algebraic Geometry)
MEGA 2013(代数几何的有效方法)
- 批准号:
1303109 - 财政年份:2013
- 资助金额:
$ 14.46万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational Tropical Geometry and its Applications
计算热带几何及其应用
- 批准号:
MR/Y003888/1 - 财政年份:2024
- 资助金额:
$ 14.46万 - 项目类别:
Fellowship
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 14.46万 - 项目类别:
Standard Grant
A mechanistic understanding of glymphatic transport and its implications in neurodegenerative disease
对类淋巴运输的机制及其在神经退行性疾病中的影响的理解
- 批准号:
10742654 - 财政年份:2023
- 资助金额:
$ 14.46万 - 项目类别:
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 14.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
What triggers RV Fiber Re-Orientation in response to RV pressure overload, and what is its Consequence on Inter-Ventricular Decoupling?
是什么触发了右心室纤维重新定向以响应右心室压力过载,以及它对心室间解耦的影响是什么?
- 批准号:
10587587 - 财政年份:2023
- 资助金额:
$ 14.46万 - 项目类别:
Projective geometry in arbitrary characteristic and its application to fundamental algebraic varieties
任意特征的射影几何及其在基本代数簇中的应用
- 批准号:
22K03236 - 财政年份:2022
- 资助金额:
$ 14.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of turbulent structures and its development into statistical theory
湍流结构的几何及其统计理论的发展
- 批准号:
22K03930 - 财政年份:2022
- 资助金额:
$ 14.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamics of FGF and its integration with other pathways during human germ layer differentiation
人类胚层分化过程中 FGF 的动态及其与其他途径的整合
- 批准号:
10674713 - 财政年份:2022
- 资助金额:
$ 14.46万 - 项目类别:
Singularity theory in mixed characteristic and its applications to the theory of F-singularities and birational geometry
混合特性奇异性理论及其在F-奇异性和双有理几何理论中的应用
- 批准号:
22H01112 - 财政年份:2022
- 资助金额:
$ 14.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of sensory dendrite morphology and its impact on olfactory sensitivity
感觉树突形态分析及其对嗅觉敏感度的影响
- 批准号:
10651870 - 财政年份:2022
- 资助金额:
$ 14.46万 - 项目类别: