Collaborative Research: Characterizing Interactions of Carbon Dioxide with Tailored Adsorbing Materials for Capture of Carbon Dioxide from Power Plant Exhaust Gas and Ambient Air

合作研究:表征二氧化碳与定制吸附材料的相互作用,用于捕获发电厂废气和环境空气中的二氧化碳

基本信息

  • 批准号:
    1403298
  • 负责人:
  • 金额:
    $ 29.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-01 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

Jones / Hayes1403239 / 1403298 Collaborative Research: Characterizing Interactions of Carbon Dioxide with Tailored Adsorbing Materials for Capture of Carbon Dioxide from Power Plant Exhaust Gas and Ambient AirCapturing CO2 from ambient air, or air capture, has significant technical challenges. The concentration of CO2 in air (~ 400 ppm) is far less than the CO2 concentrations in other applications such as post-combustion flue gas treatment. Any air capture process must use minimal amounts of energy, ideally from a distributed renewable source such as solar thermal energy. To apply air capture or conventional Carbon Capture Utilization and Storage (CCUS) on large scales, low cost and highly durable materials are required. Tailored carbon dioxide adsorbents that combine nitrogen-bearing chemicals on solid sponge-like supports are perhaps the only class of adsorbents that might be practical for air capture applications. These materials are also important in CO2 removal from flue gases. These gas separation processes require a material to selectively removes CO2 (leaving other species behind) in the temperature range of 0-65 C, and in an environment where water is ubiquitous. Under these conditions, many types of adsorbents can be effectively ruled out. Some (physisorbents) will not effectively adsorb CO2 under these conditions because water competes with the carbon dioxide for sites within the material. Some other chemical types (chemisorbents) require high temperature operating conditions. In contrast,the PIs propose to use supported amines to adsorb large volumes of CO2. The amines are also selective for CO2. Even when the carbon dioxide is fairly dilute, as in air, these materials are able to withdraw the carbon dioxide from the atmosphere. Thus, the proposed work here focuses on fundamental characterization of connections between CO2 and the specialized adsorbents, targeted towards conventional CCUS. The purpose of the proposed work is to provide a comprehensive study of specialized solid amine adsorbents in cycles of carbon dioxide adsorption and desorption relevant to CO2 capture from industrial emissions like power plant flue gas and ambient air. The work will bring together traditional adsorption/desorption studies with structural characterization techniques applied to these materials, coupled with computational studies. A particularly innovative aspect will be the application of three different in-situ spectroscopic techniques, infrared, Raman, and nuclear magnetic resonance spectroscopy to probe the structure of the CO2 as it adsorbs to the surface of the specialized amine adsorbent. A cost-effective technology that could capture carbon dioxide (CO2) from ambient air could minimize the problems associated with transporting large volumes of CO2 from point source emitters (e.g. coal-fired power plants) to sites suitable for geological sequestration. Unlike conventional Carbon Capture Utilization and Storage (CCUS) from large power plant exhaust gases, which can at best slow the rate of increase of the atmospheric CO2 concentration, direct air capture, if widely adopted, can reduce the atmospheric CO2 level. This technology can impact distributed emissions sources (e.g. vehicles) that are currently beyond the reach of carbon capture technologies. The fundamental scientific investigations will provide new insights that will impact a wide array of CO2 adsorption technologies, including post-combustion CO2 capture, the direct extraction of CO2 from ambient air, purification of natural gas streams, and adsorption of CO2 on similar nitrogen-bearing materials for catalysis. The collaborative project engages scientists from two disciplines, (i) chemical and biomolecular engineering and (ii) chemistry and biochemistry, with student exchanges and collaboration fostering communication across the boundaries of science and engineering. The project also has significant potential to impact groups that are historically under-represented in science and engineering. PIs will actively recruit under-represented students to take part in this research, engaging Georgia Tech programs such as the Summer Undergraduate Research in Engineering (SURE) program. Additionally, the Institute for School Partnership (ISP) at Washington University will engage secondary school teachers and teach them about CCUS.
Jones /Hayes 1403239/ 1403298合作研究:表征二氧化碳与用于从发电厂废气和环境空气中捕获二氧化碳的定制吸附材料的相互作用从环境空气中捕获CO2或空气捕获具有重大的技术挑战。空气中的CO2浓度(~ 400 ppm)远低于其他应用中的CO2浓度,如燃烧后烟气处理。任何空气捕获过程都必须使用最少量的能量,理想情况下来自分布式可再生能源,如太阳能。为了大规模应用空气捕获或传统的碳捕获利用和储存(CCUS),需要低成本和高度耐用的材料。在固体海绵状载体上结合联合收割机含氮化学品的定制二氧化碳吸附剂可能是唯一一类可用于空气捕获应用的吸附剂。这些材料在从烟道气中去除CO2中也很重要。这些气体分离过程需要一种材料,在0-65 ℃的温度范围内,以及在水无处不在的环境中,选择性地去除CO2(留下其他物质)。在这些条件下,可以有效地排除许多类型的吸附剂。有些(物理吸附剂)在这些条件下不能有效地吸附二氧化碳,因为水与二氧化碳竞争材料内的位置。一些其他化学类型(化学吸附剂)需要高温操作条件。相比之下,PI建议使用负载胺来吸附大量二氧化碳。胺也对CO2具有选择性。即使二氧化碳相当稀薄,如在空气中,这些材料也能够从大气中吸收二氧化碳。因此,这里提出的工作重点是CO2和专门的吸附剂之间的连接的基本特征,针对传统的CCUS。拟议的工作的目的是提供一个全面的研究专门的固体胺吸附剂在循环的二氧化碳吸附和解吸相关的二氧化碳捕获从工业排放,如电厂烟气和环境空气。这项工作将把传统的吸附/解吸研究与应用于这些材料的结构表征技术结合起来,再加上计算研究。一个特别创新的方面将是应用三种不同的原位光谱技术,红外,拉曼和核磁共振光谱,以探测CO2的结构,因为它吸附到专门的胺吸附剂的表面。一种能够从环境空气中捕获二氧化碳(CO2)的成本效益高的技术可以最大限度地减少将大量CO2从点源排放源(例如燃煤发电厂)运输到适合地质封存的地点所带来的问题。与传统的大型发电厂废气的碳捕集利用和储存(CCUS)不同,它最多只能减缓大气CO2浓度的增加速度,如果广泛采用,直接空气捕集可以降低大气CO2水平。这项技术可以影响目前碳捕获技术无法触及的分布式排放源(例如车辆)。基础科学研究将提供新的见解,这些见解将影响广泛的CO2吸附技术,包括燃烧后CO2捕获,从环境空气中直接提取CO2,天然气流的净化以及在类似的含氮材料上吸附CO2进行催化。该合作项目涉及两个学科的科学家,(i)化学和生物分子工程,(ii)化学和生物化学,学生交流和合作促进跨越科学和工程界限的沟通。该项目还具有重大的潜力,影响历史上在科学和工程领域代表性不足的群体。PI将积极招募代表性不足的学生参加这项研究,从事格鲁吉亚技术项目,如夏季本科工程研究(SURE)计划。此外,华盛顿大学的学校伙伴关系研究所(ISP)将与中学教师合作,向他们传授CCUS。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sophia Hayes其他文献

Sophia Hayes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sophia Hayes', 18)}}的其他基金

Linking Quantum Sensing Technologies across Disciplines: a Convergent Quantum Sciences and Engineering Graduate Training Program
连接跨学科的量子传感技术:融合量子科学与工程研究生培训计划
  • 批准号:
    2152221
  • 财政年份:
    2022
  • 资助金额:
    $ 29.09万
  • 项目类别:
    Standard Grant
Optically-pumped NMR Enhancements Enable Studies of Semiconductor Interfaces
光泵核磁共振增强功能使半导体界面研究成为可能
  • 批准号:
    2004915
  • 财政年份:
    2020
  • 资助金额:
    $ 29.09万
  • 项目类别:
    Continuing Grant
Exploiting Enhanced Polarization from Optically-Pumped NMR of Semiconductors
利用半导体光泵核磁共振增强偏振
  • 批准号:
    1206447
  • 财政年份:
    2012
  • 资助金额:
    $ 29.09万
  • 项目类别:
    Continuing Grant
MRI: Development of Combined Optically-pumped and Optically-detected NMR of Bulk and Nanostructured Semiconductors
MRI:块体和纳米结构半导体的光泵浦和光检测组合 NMR 的开发
  • 批准号:
    0923413
  • 财政年份:
    2009
  • 资助金额:
    $ 29.09万
  • 项目类别:
    Standard Grant
CAREER: Spectroscopic Studies of Interface Structure and Strain in Low-dimensional Semiconductor Heterostructures by Laser-enhanced Nuclear Magnetic Resonance
职业:通过激光增强核磁共振对低维半导体异质结构中的界面结构和应变进行光谱研究
  • 批准号:
    0239560
  • 财政年份:
    2003
  • 资助金额:
    $ 29.09万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Characterizing Atmospheric Tropical-waves of the Lower Stratosphere with Reel-down Atmospheric Temperature Sensing for Strateole-2--RATS Chasing CATS!
合作研究:利用 Strateole-2 的卷轴大气温度传感来表征平流层下部的大气热带波——RATS 追逐 CATS!
  • 批准号:
    2335083
  • 财政年份:
    2024
  • 资助金额:
    $ 29.09万
  • 项目类别:
    Continuing Grant
Collaborative Research: Characterizing Atmospheric Tropical-waves of the Lower Stratosphere with Reel-down Atmospheric Temperature Sensing for Strateole-2--RATS Chasing CATS!
合作研究:利用 Strateole-2 的卷轴大气温度传感来表征平流层下部的大气热带波——RATS 追逐 CATS!
  • 批准号:
    2335082
  • 财政年份:
    2024
  • 资助金额:
    $ 29.09万
  • 项目类别:
    Continuing Grant
Collaborative Research: Characterizing and empowering student success when traversing the academic help landscape
协作研究:在穿越学术帮助景观时描述并赋予学生成功的能力
  • 批准号:
    2336804
  • 财政年份:
    2024
  • 资助金额:
    $ 29.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterizing and empowering student success when traversing the academic help landscape
协作研究:在穿越学术帮助景观时描述并赋予学生成功的能力
  • 批准号:
    2336805
  • 财政年份:
    2024
  • 资助金额:
    $ 29.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Determining the role of uranium(V) in the global uranium cycle by characterizing burial mechanisms in marine sinks
合作研究:通过表征海洋汇埋藏机制确定铀(V)在全球铀循环中的作用
  • 批准号:
    2322205
  • 财政年份:
    2024
  • 资助金额:
    $ 29.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterizing Best Practices of Instructors who Have Narrowed Performance Gaps in Undergraduate Student Achievement in Introductory STEM Courses
合作研究:缩小本科生 STEM 入门课程成绩差距的讲师的最佳实践
  • 批准号:
    2420369
  • 财政年份:
    2024
  • 资助金额:
    $ 29.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Determining the role of uranium(V) in the global uranium cycle by characterizing burial mechanisms in marine sinks
合作研究:通过表征海洋汇埋藏机制确定铀(V)在全球铀循环中的作用
  • 批准号:
    2322206
  • 财政年份:
    2024
  • 资助金额:
    $ 29.09万
  • 项目类别:
    Standard Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
  • 批准号:
    2312689
  • 财政年份:
    2023
  • 资助金额:
    $ 29.09万
  • 项目类别:
    Continuing Grant
Collaborative Research: Characterizing the emerging field of departmental change and empowering an inclusive network of practitioners
协作研究:描述部门变革的新兴领域并增强包容性从业者网络
  • 批准号:
    2315407
  • 财政年份:
    2023
  • 资助金额:
    $ 29.09万
  • 项目类别:
    Standard Grant
Collaborative Research: Characterizing the emerging field of departmental change and empowering an inclusive network of practitioners
协作研究:描述部门变革的新兴领域并增强包容性从业者网络
  • 批准号:
    2315405
  • 财政年份:
    2023
  • 资助金额:
    $ 29.09万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了