Linking Quantum Sensing Technologies across Disciplines: a Convergent Quantum Sciences and Engineering Graduate Training Program
连接跨学科的量子传感技术:融合量子科学与工程研究生培训计划
基本信息
- 批准号:2152221
- 负责人:
- 金额:$ 299.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Quantum sensors rely on the unique physical properties of nature at the atomic and subatomic scales to detect phenomena that evade identification in the human-scaled realm of lived experience. As such quantum behavior finds increasingly more applications, there is a growing need for a workforce prepared to discover, develop, and deploy the science and engineering advancements in this emerging field. In addition, awareness of how discoveries in the lab can impact the economy and the private sector is critical to harnessing these developments for society to benefit. To capitalize on such developments, this NSF Research Traineeships (NRT) project, "Linking Quantum Sensing TechnoLogies across Disciplines (LinQ-STL)," is establishing an interdisciplinary program of study to connect research efforts across the St. Louis region between Washington University, the University of Missouri – St. Louis, St. Louis University, and Harris Stowe State University. The project’s vision is to build quantum fluency among scientists and engineers spanning the disciplines of chemistry, biology, physics, medicine, engineering, and mathematics. LinQ-STL achieves these goals by building common vocabulary, research community awareness, research identity, and technical skills that will prepare the trainees to launch a range of professional careers. The project anticipates training 100 students, including 40 funded trainees from chemistry, physics, computer, and electrical and system engineering doctorate programs. Furthermore, the project's investigators seek to create institutional change in graduate education by demonstrating how career-building internships and experiences aligned with students’ professional interests can affect their career trajectories and success. This model will be broadly disseminated to other disciplines and institutions.Three essential areas guide the experimental, theoretical, and computational work of this project: “looking out” beyond the Earth into the universe; “looking in” to meso- and microscopic domains of quantum bits and materials phenomena; and “looking where we cannot yet see” comprising efforts to identify heretofore unmeasured domains such as dark matter detection. LinQ-STL will pursue opportunities for quantum sensing, with cross-cutting themes such as new instrumentation and new materials, data-enabled science via machine learning, and photon detection over decades of energy scales. Researchers “looking out” (astrophysics) will develop observational tools across orders of magnitude in photon energy, enabling the acquisition of massive data sets. Researchers “looking in” at the smallest material length scales will use photon spectroscopies and the unexpected benefits of materials defects to probe new behaviors. Finally, “looking where we cannot yet see” includes new quantum light imaging modalities applicable in biology and medical imaging, and new probes of topological and quantum phenomena in materials. Research by the project team will also probe how students perceive themselves as science learners via their science identity, racial and gender identity, and efficacy beliefs—to diversify the workforce by acknowledging the role of identity in enabling students to become the next generation of leaders and teachers.The NSF Research Traineeship (NRT) Program is designed to encourage the development and implementation of bold, new potentially transformative models for STEM graduate education training. The program is dedicated to effective training of STEM graduate students in high priority interdisciplinary or convergent research areas through comprehensive traineeship models that are innovative, evidence-based, and aligned with changing workforce and research needs. Because of its alignment with the research thrusts within the Directorate of Mathematical and Physical Sciences (MPS), the project is receiving co-funding from the MPS Office of Multidisciplinary Activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子传感器依赖于原子和亚原子尺度上自然界的独特物理特性,以检测在人类生活经验领域中无法识别的现象。随着这种量子行为的应用越来越多,越来越需要一支准备好发现、开发和部署这一新兴领域的科学和工程进步的队伍。此外,了解实验室中的发现如何影响经济和私营部门对于利用这些发展使社会受益至关重要。为了利用这些发展,NSF研究培训(NRT)项目“跨学科链接量子传感技术(LinQ-STL)”正在建立一个跨学科的研究计划,以连接华盛顿大学、密苏里州-圣路易斯大学、圣路易斯大学和哈里斯斯托州立大学之间在圣路易斯地区的研究工作。该项目的愿景是在化学、生物学、物理学、医学、工程学和数学等学科的科学家和工程师中建立量子流利性。LinQ-STL通过建立通用词汇,研究社区意识,研究身份和技术技能来实现这些目标,这些技能将为学员开展一系列职业生涯做好准备。该项目预计将培训100名学生,其中包括40名来自化学,物理,计算机,电气和系统工程博士学位课程的资助学员。此外,该项目的调查人员试图通过展示职业建设实习和与学生的专业兴趣相一致的经验如何影响他们的职业轨迹和成功来创造研究生教育的制度变革。该模型将广泛传播到其他学科和机构。三个基本领域指导该项目的实验、理论和计算工作:“向外看”地球以外的宇宙;“向内看”量子比特和材料现象的中微观领域;以及“看我们还看不见的地方”,包括努力识别迄今为止未测量的领域,如暗物质探测。LinQ-STL将寻求量子传感的机会,包括跨领域的主题,如新仪器和新材料,通过机器学习实现的数据科学,以及数十年能量尺度的光子检测。研究人员“向外看”(天体物理学)将开发光子能量数量级的观测工具,从而能够获取大量数据集。研究人员“着眼于”最小的材料长度尺度,将使用光子光谱和材料缺陷的意想不到的好处来探测新的行为。最后,“寻找我们还看不到的地方”包括适用于生物学和医学成像的新量子光成像模式,以及材料中拓扑和量子现象的新探测。项目团队的研究还将探讨学生如何通过他们的科学身份,种族和性别身份以及功效信念来感知自己作为科学学习者-通过承认身份在使学生成为下一代领导者和教师方面的作用来实现劳动力的多样化。NSF研究培训(NRT)计划旨在鼓励开发和实施大胆,为STEM研究生教育培训提供新的潜在变革模式。该计划致力于通过创新,循证,并与不断变化的劳动力和研究需求保持一致的综合培训模式,在高优先级的跨学科或融合研究领域对STEM研究生进行有效培训。由于该项目与数学和物理科学理事会(MPS)的研究目标一致,因此获得了MPS多学科活动办公室的共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sophia Hayes其他文献
Sophia Hayes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sophia Hayes', 18)}}的其他基金
Optically-pumped NMR Enhancements Enable Studies of Semiconductor Interfaces
光泵核磁共振增强功能使半导体界面研究成为可能
- 批准号:
2004915 - 财政年份:2020
- 资助金额:
$ 299.84万 - 项目类别:
Continuing Grant
Collaborative Research: Characterizing Interactions of Carbon Dioxide with Tailored Adsorbing Materials for Capture of Carbon Dioxide from Power Plant Exhaust Gas and Ambient Air
合作研究:表征二氧化碳与定制吸附材料的相互作用,用于捕获发电厂废气和环境空气中的二氧化碳
- 批准号:
1403298 - 财政年份:2014
- 资助金额:
$ 299.84万 - 项目类别:
Standard Grant
Exploiting Enhanced Polarization from Optically-Pumped NMR of Semiconductors
利用半导体光泵核磁共振增强偏振
- 批准号:
1206447 - 财政年份:2012
- 资助金额:
$ 299.84万 - 项目类别:
Continuing Grant
MRI: Development of Combined Optically-pumped and Optically-detected NMR of Bulk and Nanostructured Semiconductors
MRI:块体和纳米结构半导体的光泵浦和光检测组合 NMR 的开发
- 批准号:
0923413 - 财政年份:2009
- 资助金额:
$ 299.84万 - 项目类别:
Standard Grant
CAREER: Spectroscopic Studies of Interface Structure and Strain in Low-dimensional Semiconductor Heterostructures by Laser-enhanced Nuclear Magnetic Resonance
职业:通过激光增强核磁共振对低维半导体异质结构中的界面结构和应变进行光谱研究
- 批准号:
0239560 - 财政年份:2003
- 资助金额:
$ 299.84万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
If a spin could torque: quantum force sensing with levitated nanodiamonds
如果自旋可以产生扭矩:利用悬浮纳米金刚石进行量子力传感
- 批准号:
DP240100942 - 财政年份:2024
- 资助金额:
$ 299.84万 - 项目类别:
Discovery Projects
Multi-dimensional quantum-enabled sub-THz Space-Borne ISAR sensing for space domain awareness and critical infrastructure monitoring - SBISAR
用于空间域感知和关键基础设施监测的多维量子亚太赫兹星载 ISAR 传感 - SBISAR
- 批准号:
EP/Y022092/1 - 财政年份:2024
- 资助金额:
$ 299.84万 - 项目类别:
Research Grant
Quantum Hall plasmon resonator-based qubit sensing and multi-qubit coupling
基于量子霍尔等离子体谐振器的量子位传感和多量子位耦合
- 批准号:
24K06915 - 财政年份:2024
- 资助金额:
$ 299.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF Convergence Accelerator Track L: Portable Quantum-enhanced Sensing and Species Identification of Bioaerosols
NSF 融合加速器轨道 L:生物气溶胶的便携式量子增强传感和物种识别
- 批准号:
2344350 - 财政年份:2024
- 资助金额:
$ 299.84万 - 项目类别:
Standard Grant
Quantum Sensing of the Geomagnetic Space Weather Environment
地磁空间天气环境的量子传感
- 批准号:
EP/X036545/1 - 财政年份:2023
- 资助金额:
$ 299.84万 - 项目类别:
Research Grant
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 299.84万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 299.84万 - 项目类别:
Standard Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 299.84万 - 项目类别:
Standard Grant
Advancing Quantum Sensing and Metrology Education: Concepts, Curricula, and Research on Student Learning
推进量子传感和计量教育:概念、课程和学生学习研究
- 批准号:
2315691 - 财政年份:2023
- 资助金额:
$ 299.84万 - 项目类别:
Standard Grant
Advanced Quantum Sensors for Next-Generation Sensing Applications
适用于下一代传感应用的先进量子传感器
- 批准号:
FT210100809 - 财政年份:2023
- 资助金额:
$ 299.84万 - 项目类别:
ARC Future Fellowships