Rydberg Interactions and Quantum Control of Cold Trapped Holmium Atoms
冷捕获钬原子的里德伯相互作用和量子控制
基本信息
- 批准号:1404357
- 负责人:
- 金额:$ 41.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project will study the properties of Holmium atoms. The Holmium atom has one of the most complex internal structures of any element and our knowledge of its properties is incomplete. Detailed measurements will be made of the atomic structure of Holmium. Experimental methods using lasers and electromagnetic fields will be developed to prepare different internal states and to measure interactions between Holmium atoms. These measurements and methods will provide a foundation for future applications of Holmium to information processing. In addition the project will train scientists in modern techniques of atomic physics and prepare them for careers in academia and industry. The results of this research will be disseminated to the local public in the Madison, Wisconsin area through open houses in the Physics department, through visits to local schools, and by providing internships for local high school students. The rare earth element Holmium (Ho) has a 128 dimensional ground state manifold, the largest of any stable atomic isotope. Experiments will use a Magneto-Optical Trap of Ho atoms, recently demonstrated in the Saffman laboratories. Optical control techniques using rf and microwave fields will be developed to prepare specific Zeeman substates in the 128 dimensional ground manifold. Rydberg states will be probed using two-photon excitation and the hitherto unknown quantum defects of the Ho Rydberg states will be measured. The quantum defects will be used to develop models for effective Rydberg wavefunctions which will then be used to calculate Rydberg-Rydberg interaction strengths. The Rydberg state measurements will form the basis for Rydberg blockade experiments with Ho atoms, and the demonstration of entanglement. These studies of the ground and Rydberg state properties of Ho atoms, as well as the development of control techniques, will establish a knowledge basis for collective encoding of quantum registers in small Ho ensembles.
本研究项目将研究钬原子的性质。钬原子是所有元素中最复杂的内部结构之一,我们对其性质的了解还不完整。详细的测量将由钬的原子结构。将开发使用激光和电磁场的实验方法来制备不同的内部状态并测量钬原子之间的相互作用。这些测量和方法将为钬在信息处理中的未来应用奠定基础。 此外,该项目还将培训科学家掌握原子物理学的现代技术,并为他们在学术界和工业界的职业生涯做好准备。这项研究的结果将传播给当地公众在麦迪逊,威斯康星州地区通过开放的房子在物理系,通过访问当地学校,并提供实习为当地高中生。稀土元素钬(Ho)具有128维基态流形,是任何稳定原子同位素中最大的。实验将使用最近在萨夫曼实验室演示的Ho原子磁光阱。将开发使用射频和微波场的光学控制技术,以在128维地面流形中制备特定的塞曼子态。里德伯态将使用双光子激发进行探测,并测量迄今未知的Ho里德伯态的量子缺陷。量子缺陷将用于开发有效的里德伯波函数模型,然后将用于计算里德伯-里德伯相互作用强度。里德伯态的测量将成为用Ho原子进行里德伯封锁实验和证明纠缠的基础。Ho原子的基态和里德伯态性质的这些研究,以及控制技术的发展,将建立一个知识基础的集体编码的量子寄存器在小Ho系综。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Saffman其他文献
A quantum telecom link
量子电信链路
- DOI:
10.1038/nphys1825 - 发表时间:
2010-11-02 - 期刊:
- 影响因子:18.400
- 作者:
Mark Saffman - 通讯作者:
Mark Saffman
Multiconical emission of a monolithic mini-cavity optical parametric oscillator
- DOI:
10.1016/j.optcom.2005.02.057 - 发表时间:
2005-07-01 - 期刊:
- 影响因子:
- 作者:
Martynas Peckus;Kestutis Staliunas;Mark Saffman;Gintas Slekys;Valdas Sirutkaitis;Valerijus Smilgevicius;Rimantas Grigonis - 通讯作者:
Rimantas Grigonis
Mark Saffman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Saffman', 18)}}的其他基金
Quantum Error Correction with A Dual Species Atomic Qubit Array
使用双物质原子量子位阵列进行量子纠错
- 批准号:
2210437 - 财政年份:2022
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
Quantum Optics in Rydberg Entangled Atomic Arrays
里德伯纠缠原子阵列中的量子光学
- 批准号:
1806548 - 财政年份:2018
- 资助金额:
$ 41.7万 - 项目类别:
Continuing Grant
RAISE-TAQS: Integrated Photonics for Quantum Interfaces of Atoms, Molecules, and Light
RAISE-TAQS:原子、分子和光量子界面的集成光子学
- 批准号:
1839176 - 财政年份:2018
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
Quantum Gates, Algorithms, and Error Correction with a Neutral Atom Qubit Array
量子门、算法和中性原子量子位阵列的纠错
- 批准号:
1720220 - 财政年份:2017
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
Quantum Coherence with Holmium Atoms: Magic Traps, Clocks, and Entanglement
钬原子的量子相干性:魔法陷阱、时钟和纠缠
- 批准号:
1707854 - 财政年份:2017
- 资助金额:
$ 41.7万 - 项目类别:
Continuing Grant
Atom-Photon Entanglement and Functional Quantum Network Nodes with Atomic Ensembles
原子光子纠缠和具有原子系综的功能量子网络节点
- 批准号:
1521374 - 财政年份:2015
- 资助金额:
$ 41.7万 - 项目类别:
Continuing Grant
Travel support for DAMOP2014 for US students, June 2-6, 2014
为美国学生提供 DAMOP2014 旅行支持,2014 年 6 月 2 日至 6 日
- 批准号:
1427839 - 财政年份:2014
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
Rydberg Blockaded Ensemble Qubits and Atom-Photon Quantum Interfaces
里德堡封锁系综量子位和原子光子量子接口
- 批准号:
1104531 - 财政年份:2011
- 资助金额:
$ 41.7万 - 项目类别:
Continuing Grant
Quantum Gates with Single Atom and Ensemble Qubits Mediated by Rydberg iInteractions
由 Rydberg iInteractions 介导的具有单原子和集合量子位的量子门
- 批准号:
1005550 - 财政年份:2010
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
Spectroscopy and Control of Cold Holmium Atoms for Quantum Information and Quantum Optics
用于量子信息和量子光学的冷钬原子的光谱学和控制
- 批准号:
0969883 - 财政年份:2010
- 资助金额:
$ 41.7万 - 项目类别:
Continuing Grant
相似海外基金
Non-perturbative studies of electron-lattice interactions in quantum materials
量子材料中电子晶格相互作用的非微扰研究
- 批准号:
2401388 - 财政年份:2024
- 资助金额:
$ 41.7万 - 项目类别:
Continuing Grant
Light-matter interactions in realistic settings: unifying open quantum systems with macroscopic quantum electrodynamics
现实环境中的光与物质相互作用:将开放量子系统与宏观量子电动力学统一起来
- 批准号:
2888362 - 财政年份:2023
- 资助金额:
$ 41.7万 - 项目类别:
Studentship
Competing charge, spin, and molecular lattice interactions lead to quantum glass phases in strongly correlated pi-electron systems
竞争性电荷、自旋和分子晶格相互作用导致强相关π电子系统中的量子玻璃相
- 批准号:
23H01114 - 财政年份:2023
- 资助金额:
$ 41.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Quantitative analyses of quantum many-body interactions in low-dimensional electron systems with hidden spin polarization
具有隐藏自旋极化的低维电子系统中量子多体相互作用的定量分析
- 批准号:
22K03495 - 财政年份:2022
- 资助金额:
$ 41.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interactions between noncommutative geometry and quantum information
非交换几何与量子信息之间的相互作用
- 批准号:
RGPIN-2022-03373 - 财政年份:2022
- 资助金额:
$ 41.7万 - 项目类别:
Discovery Grants Program - Individual
Topology, interactions, and disorder in exotic quantum materials
奇异量子材料中的拓扑、相互作用和无序
- 批准号:
RGPAS-2020-00064 - 财政年份:2022
- 资助金额:
$ 41.7万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
LEAPS-MPS Quantum vortex states and non-collinear magnetic interactions in light-driven quantum materials
光驱动量子材料中的LEAPS-MPS量子涡旋态和非共线磁相互作用
- 批准号:
2213429 - 财政年份:2022
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
Efficacy of light-matter interactions in the design of quantum photonic neural networks with quantum dots
光与物质相互作用在量子点量子光子神经网络设计中的功效
- 批准号:
575404-2022 - 财政年份:2022
- 资助金额:
$ 41.7万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Universal Few-Body Quantum States and Interactions
普遍的少体量子态和相互作用
- 批准号:
2207977 - 财政年份:2022
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant
NSF BSF: Nonlinear Photon Interactions in Cooperative Quantum Optical Systems
NSF BSF:协作量子光学系统中的非线性光子相互作用
- 批准号:
2207972 - 财政年份:2022
- 资助金额:
$ 41.7万 - 项目类别:
Standard Grant