Quantum Gates, Algorithms, and Error Correction with a Neutral Atom Qubit Array

量子门、算法和中性原子量子位阵列的纠错

基本信息

  • 批准号:
    1720220
  • 负责人:
  • 金额:
    $ 70万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Quantum computing is attracting great interest due to its potential for solving practical problems that are intractable on classical computers. Areas of application include cryptography, database searching, pattern classification, solving large systems of coupled equations, and design of new functional materials or chemical compounds. A quantum computer is built from quantum bits, or qubits, that store quantum information which is processed using quantum logic gates. This project will continue the development of quantum computing using qubits encoded in the internal states of individual atoms. While the current state of the art involves experiments with 10-20 qubits, it is believed that computers with many thousands of qubits will be needed to realize the promise of quantum computation. In this respect the atom based approach being developed in this project is particularly attractive since a large number of neutral atoms can be held and controlled in close proximity without undesired interference with each other. The project seeks to advance the state of the art of several key performance metrics: the ability of qubits to preserve their quantum states for a long time, the fidelity of logic gate operations and qubit measurements, and the number of qubits that can be prepared in a single system. These advances will then be used to demonstrate a quantum algorithm for database searching. The project will contribute to scientific workforce development through training of students and postdoctoral researchers. The training will be interdisciplinary, drawing on methods and ideas from atomic and laser physics, electronic and computer based control systems, and quantum information theory. Research results will be incorporated into the University teaching curriculum. The experimental approach will use a two-dimensional array of cesium and rubidium atoms trapped in potential wells defined by light. The potential wells will be prepared by combining laser light of several different frequencies in a way that protects stored quantum information from decoherence. A movable optical tweezer system will be implemented to arrange trapped atoms for 100% occupancy of an array with up to 50 qubit sites. Quantum logic gates to create entanglement will be performed by exciting atoms to Rydberg states with laser pulses. Adiabatic pulses with shaped temporal profiles will be used to improve the fidelity of the entangling operations. Atomic states will be measured without crosstalk to other qubits or loss of atoms using a two-species approach whereby one species (cesium) will be used for memory and quantum logic, and a second species (rubidium) will be used for measurements. The quantum states to be measured will be transferred from cesium to rubidium atoms using an interspecies Rydberg gate. These capabilities will then be leveraged to demonstrate a multi-qubit quantum algorithm that provides quadratic speedup for database searching. The team will also implement quantum error correction to protect qubits against bit flip or phase flip errors.
量子计算由于其解决经典计算机上难以解决的实际问题的潜力而引起了人们的极大兴趣。应用领域包括密码学、数据库搜索、模式分类、求解耦合方程的大型系统以及新功能材料或化合物的设计。量子计算机是由量子比特或量子比特构建的,量子比特存储使用量子逻辑门处理的量子信息。该项目将继续使用编码在单个原子内部状态中的量子位来开发量子计算。虽然目前的技术水平涉及10-20个量子位的实验,但人们相信需要具有数千个量子位的计算机才能实现量子计算的前景。在这方面,在这个项目中开发的基于原子的方法是特别有吸引力的,因为大量的中性原子可以被保持和控制在非常接近的位置,而不会相互干扰。该项目旨在推进几个关键性能指标的最新发展:量子位长时间保持量子状态的能力,逻辑门操作和量子位测量的保真度,以及可以在单个系统中准备的量子位数量。这些进展将被用来演示数据库搜索的量子算法。该项目将通过培训学生和博士后研究人员,促进科学工作者队伍的发展。培训将是跨学科的,借鉴原子和激光物理学,电子和基于计算机的控制系统以及量子信息理论的方法和思想。研究成果将纳入大学教学课程。实验方法将使用一个二维的铯和铷原子阵列,这些原子被困在由光定义的势威尔斯阱中。潜在的威尔斯将通过组合几种不同频率的激光来制备,以保护存储的量子信息免受退相干。一个可移动的光镊系统将被实现,以安排被困原子100%占用的阵列与多达50个量子位网站。量子逻辑门将通过激光脉冲将原子激发到里德伯态来产生纠缠。具有成形时间轮廓的绝热脉冲将用于提高纠缠操作的保真度。原子状态将使用两种物质的方法测量,而不会与其他量子比特发生串扰或丢失原子,其中一种物质(铯)将用于存储器和量子逻辑,第二种物质(铷)将用于测量。要测量的量子态将使用种间里德堡门从铯原子转移到铷原子。 然后将利用这些功能来演示多量子位量子算法,该算法为数据库搜索提供二次加速。该团队还将实施量子纠错,以保护量子比特免受位翻转或相位翻转错误的影响。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A reconfigurable blue-detuned lattice for neutral atom quantum computing
用于中性原子量子计算的可重构蓝色失谐晶格
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    GRAHAM, T.;POOLE, C;JIANG, X;MARRA, Z;GRINKEMEYER, B;HICKMAN, G;CHEREK, J;EBERT, M;SAFFMAN, M.
  • 通讯作者:
    SAFFMAN, M.
Quantum information with Rydberg excited atoms1
里德伯激发原子的量子信息1
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saffman, M.
  • 通讯作者:
    Saffman, M.
Symmetric Rydberg controlled- Z gates with adiabatic pulses
  • DOI:
    10.1103/physreva.101.062309
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Saffman;I. Beterov;A. Dalal;E. Paez;B. Sanders
  • 通讯作者:
    M. Saffman;I. Beterov;A. Dalal;E. Paez;B. Sanders
Photon-recoil and laser-focusing limits to Rydberg gate fidelity
  • DOI:
    10.1103/physreva.103.022424
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Robicheaux;T. Graham;M. Saffman
  • 通讯作者:
    F. Robicheaux;T. Graham;M. Saffman
Dual species Rydberg and collisional interactions in an optical dipole trap
光学偶极子陷阱中的双物种里德伯和碰撞相互作用
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ebert, Matthew;Hickman, Garrett;Marra, Alphonse;Jiang, Xiaoyu;Graham, Trent;Saffman, Mark
  • 通讯作者:
    Saffman, Mark
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Saffman其他文献

A quantum telecom link
量子电信链路
  • DOI:
    10.1038/nphys1825
  • 发表时间:
    2010-11-02
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Mark Saffman
  • 通讯作者:
    Mark Saffman
Multiconical emission of a monolithic mini-cavity optical parametric oscillator
  • DOI:
    10.1016/j.optcom.2005.02.057
  • 发表时间:
    2005-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Martynas Peckus;Kestutis Staliunas;Mark Saffman;Gintas Slekys;Valdas Sirutkaitis;Valerijus Smilgevicius;Rimantas Grigonis
  • 通讯作者:
    Rimantas Grigonis

Mark Saffman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Saffman', 18)}}的其他基金

Quantum Error Correction with A Dual Species Atomic Qubit Array
使用双物质原子量子位阵列进行量子纠错
  • 批准号:
    2210437
  • 财政年份:
    2022
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Quantum Optics in Rydberg Entangled Atomic Arrays
里德伯纠缠原子阵列中的量子光学
  • 批准号:
    1806548
  • 财政年份:
    2018
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
RAISE-TAQS: Integrated Photonics for Quantum Interfaces of Atoms, Molecules, and Light
RAISE-TAQS:原子、分子和光量子界面的集成光子学
  • 批准号:
    1839176
  • 财政年份:
    2018
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Quantum Coherence with Holmium Atoms: Magic Traps, Clocks, and Entanglement
钬原子的量子相干性:魔法陷阱、时钟和纠缠
  • 批准号:
    1707854
  • 财政年份:
    2017
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
Atom-Photon Entanglement and Functional Quantum Network Nodes with Atomic Ensembles
原子光子纠缠和具有原子系综的功能量子网络节点
  • 批准号:
    1521374
  • 财政年份:
    2015
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
Travel support for DAMOP2014 for US students, June 2-6, 2014
为美国学生提供 DAMOP2014 旅行支持,2014 年 6 月 2 日至 6 日
  • 批准号:
    1427839
  • 财政年份:
    2014
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Rydberg Interactions and Quantum Control of Cold Trapped Holmium Atoms
冷捕获钬原子的里德伯相互作用和量子控制
  • 批准号:
    1404357
  • 财政年份:
    2014
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
Rydberg Blockaded Ensemble Qubits and Atom-Photon Quantum Interfaces
里德堡封锁系综量子位和原子光子量子接口
  • 批准号:
    1104531
  • 财政年份:
    2011
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
Quantum Gates with Single Atom and Ensemble Qubits Mediated by Rydberg iInteractions
由 Rydberg iInteractions 介导的具有单原子和集合量子位的量子门
  • 批准号:
    1005550
  • 财政年份:
    2010
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Spectroscopy and Control of Cold Holmium Atoms for Quantum Information and Quantum Optics
用于量子信息和量子光学的冷钬原子的光谱学和控制
  • 批准号:
    0969883
  • 财政年份:
    2010
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant

相似海外基金

Realization of high-fidelity quantum logic gates using electron spins on superfluid helium
利用超流氦上的电子自旋实现高保真量子逻辑门
  • 批准号:
    23K26488
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Multi-qubit gates mediated by several strongly coupled motional modes
由几种强耦合运动模式介导的多量子位门
  • 批准号:
    2889918
  • 财政年份:
    2023
  • 资助金额:
    $ 70万
  • 项目类别:
    Studentship
Realization of high-fidelity quantum logic gates using electron spins on superfluid helium
利用超流氦上的电子自旋实现高保真量子逻辑门
  • 批准号:
    23H01795
  • 财政年份:
    2023
  • 资助金额:
    $ 70万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
LEAPS-MPS: Multiqubit Entangling Gates for Solid-State Qubit Systems
LEAPS-MPS:用于固态量子位系统的多量子位纠缠门
  • 批准号:
    2316808
  • 财政年份:
    2023
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Design for the exciton-based molecular logic gates for quantum computing
用于量子计算的基于激子的分子逻辑门的设计
  • 批准号:
    22K03480
  • 财政年份:
    2022
  • 资助金额:
    $ 70万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Seventeen Towers and Seven Gates: a poetry collection; and Digging in Gallowgate: a critical study
十七楼七门:诗集;
  • 批准号:
    2719675
  • 财政年份:
    2022
  • 资助金额:
    $ 70万
  • 项目类别:
    Studentship
Exploring quantum enhancements from indefinite causality and time-reversing gates
从无限因果关系和时间反转门探索量子增强
  • 批准号:
    2745052
  • 财政年份:
    2022
  • 资助金额:
    $ 70万
  • 项目类别:
    Studentship
Implementation of quantum LDPC codes and fault-tolerant logic gates in physical architectures
量子 LDPC 码和容错逻辑门在物理架构中的实现
  • 批准号:
    2755580
  • 财政年份:
    2022
  • 资助金额:
    $ 70万
  • 项目类别:
    Studentship
Ameliorating off-target toxicities of CAR T cells by engineering NOT gates
通过设计 NOT 门改善 CAR T 细胞的脱靶毒性
  • 批准号:
    10657356
  • 财政年份:
    2022
  • 资助金额:
    $ 70万
  • 项目类别:
Ameliorating off-target toxicities of CAR T cells by engineering NOT gates
通过设计 NOT 门改善 CAR T 细胞的脱靶毒性
  • 批准号:
    10362126
  • 财政年份:
    2022
  • 资助金额:
    $ 70万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了