Gravitational Physics via Lunar Laser Ranging: Optimizing Data Quality

通过月球激光测距的引力物理:优化数据质量

基本信息

  • 批准号:
    1404491
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Gravity, the most evident force of nature, is in fact the weakest of the fundamental forces, and consequently the most poorly tested. Einstein's general relativity, which is currently our best description of gravity, is fundamentally incompatible with quantum mechanics and is likely to be replaced by a more complete theory in the future. A modified theory would predict small deviations in the solar system that could have profound consequences for our understanding of the Universe as a whole. Lunar laser ranging (LLR), in which short laser pulses launched from a telescope are bounced off of reflectors placed on the moon by U.S. astronauts and Soviet landers, has for decades produced various leading tests of gravity by mapping the shape of the lunar orbit to high precision. The group proposes to continue conducting leading-edge observations with the Apache Point Observatory Lunar Laser-ranging Operation (APOLLO), in an effort to subject gravity to the most stringent tests yet. APOLLO, situated atop a 9,200 ft summit in Southern New Mexico, introduces a new regime of millimeter-precision in measuring the lunar orbit. However, incomplete models are thus far unable to confirm the accuracy. The group will therefore seek to build a calibration system to ensure that APOLLO meets its millimeter measurement goal, in addition to continuing the observation campaign. The proposed work will benefit the broader community in a number of ways. On the intellectual front, improving our knowledge of gravity informs a diverse range of cosmologists, astrophysicists, particle physicists, and string theorists. The effort would also contribute to Earth and planetary science, especially via measurements produced by the superconducting gravimeter. The APOLLO team will continue a track record of engagement in education and outreach activities, and will no doubt continue to attract public interest through print, web, radio, and television media.Among other attributes that contribute to APOLLO's superior observations, routine ranging to all five lunar reflectors on timescales of minutes dramatically improves our ability to gauge lunar orientation and body distortion. This information allows a more precise determination of the path for the Moon's center of mass, thereby facilitating tests of fundamental gravity. Simultaneously, higher precision range measurements, together with data from a superconducting gravimeter at the Apache Point Observatory and from a high-quality Global Positioning System (GPS) station 2.5 km away, will greatly improve our understanding of the instantaneous location of the Observatory with respect to the Earth's center of mass (needed for the gravitational tests) by exposing subtle Earth dynamics that must be incorporated into the model. LLR measurements provide the best available tests of the strong equivalence principle, the time-rate-of-change of Newton's gravitational constant, gravitomagnetism, the inverse-square law, and preferred frame effects. In addition to these classical gravitational tests, APOLLO will permit testing of new ideas in physics relating to dark energy, extra dimensions, and violations of Lorentz Invariance. A large part of the effort proposed here is the construction of an absolute calibration system based on a cesium clock standard, a low-jitter short-pulse laser, and a precision interval counter. This system will provide an independent check of APOLLO's fundamental measurement, potentially identifying faults and confirming their pursuant remediation.
万有引力是自然界最明显的力,但实际上是基本力中最弱的,因此也是最缺乏检验的。爱因斯坦的广义相对论是目前我们对引力的最佳描述,它从根本上与量子力学不相容,未来可能会被一个更完整的理论所取代。修正后的理论将预测太阳系的微小偏差,这可能对我们对整个宇宙的理解产生深远的影响。月球激光测距(LLR)是一种从望远镜发射的短激光脉冲被美国宇航员和苏联着陆器放置在月球上的反射器反射回来的技术,几十年来,通过高精度地绘制月球轨道的形状,进行了各种领先的重力测试。该小组建议继续利用阿帕奇点天文台的月球激光测距操作(APOLLO)进行前沿观测,努力使重力经受最严格的测试。阿波罗号位于新墨西哥州南部9200英尺的山顶上,引入了毫米级精度的月球轨道测量新制度。然而,不完整的模型至今无法证实其准确性。因此,除了继续进行观测活动外,该小组将设法建立一个校准系统,以确保阿波罗达到其毫米测量目标。拟议的工作将在许多方面使更广泛的社区受益。在智力方面,不断提高我们对引力的认识,为宇宙学家、天体物理学家、粒子物理学家和弦理论家提供了各种各样的信息。这项工作还将对地球和行星科学做出贡献,特别是通过超导重力仪产生的测量结果。阿波罗小组将继续从事教育和外联活动,毫无疑问将继续通过印刷、网络、广播和电视媒体吸引公众的兴趣。在其他有助于阿波罗卓越观测的特性中,在分钟的时间尺度上对所有五个月球反射器的常规范围极大地提高了我们测量月球方向和身体扭曲的能力。这些信息可以更精确地确定月球质心的路径,从而便于对基本重力的测试。同时,更高精度的距离测量,加上来自阿帕奇点天文台超导重力仪和2.5公里外高质量全球定位系统(GPS)站的数据,将极大地提高我们对天文台相对于地球质心(引力测试所需)的瞬时位置的理解,因为它揭示了必须纳入模型的微妙的地球动力学。LLR测量为强等效原理、牛顿引力常数的时间变化率、重力磁学、平方反比定律和首选框架效应提供了最佳的可用测试。除了这些经典的引力测试之外,阿波罗还将允许测试与暗能量、额外维度和违反洛伦兹不变性有关的物理学新思想。这里提出的大部分工作是建立一个基于铯时钟标准、低抖动短脉冲激光器和精确间隔计数器的绝对校准系统。该系统将提供对APOLLO基本测量的独立检查,潜在地识别故障并确认相应的补救措施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Murphy其他文献

Sustained Improvement in Neonatal Intensive Care Unit Safety Attitudes After Teamwork Training
团队合作培训后新生儿重症监护室安全态度持续改善
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Thomas Murphy;A. Laptook;Jesse Bender
  • 通讯作者:
    Jesse Bender
733 DIFFERENTIAL EXPRESSION OF PROSTAGLANDIN RECEPTORS IN PROSTATE CANCER: A NOVEL THERAPEUTIC TARGET?
  • DOI:
    10.1016/j.juro.2011.02.1702
  • 发表时间:
    2011-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hosea Huang;Ping Shu;Thomas Murphy;Seena Aisner;Mark Jordan
  • 通讯作者:
    Mark Jordan
EN-482891-001 "BLIND SIDE” MAPPING OF UNIDIRECTIONAL ACCESSORY PATHWAYS
EN-482891-001“单向附件通道的盲区”映射
  • DOI:
    10.1016/j.hrthm.2024.03.297
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Thomas Murphy;Ryle Przybylowicz;Jose Lozano Garcia;Francis T. Phan;Saket Sanghai;Charles A. Henrikson;Seshadri Balaji;Eric Stecker
  • 通讯作者:
    Eric Stecker
High-Performance Computing Education
高性能计算教育
  • DOI:
    10.1109/mcse.2008.132
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Scott A. Lathrop;Thomas Murphy
  • 通讯作者:
    Thomas Murphy
On-orbit operations summary for the Deformable Mirror Demonstration Mission (DeMi) CubeSat
可变形镜演示任务(DeMi)立方体卫星在轨运行总结
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Morgan;Sophia K. Vlahakis;Ewan S Douglas;Gregory Allan;Paula do Vale Pereira;M. Egan;G. Fűrész;Jennifer N. Gubner;Christian A. Haughwout;Bobby G. Holden;J. Merk;Thomas Murphy;L. Pogorelyuk;D. Roascio;Yinzi Xin;K. Cahoy
  • 通讯作者:
    K. Cahoy

Thomas Murphy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Murphy', 18)}}的其他基金

Testing Gravity Using Millimeter Accuracy Data from APOLLO
使用 APOLLO 的毫米级精度数据测试重力
  • 批准号:
    1708215
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
MRI: Development of Ultrafast Near-Field Scanning Optical Microscope
MRI:超快近场扫描光学显微镜的开发
  • 批准号:
    1828155
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Room Temperature Tunable Plasmonic-Enhanced Graphene Terahertz Photodetectors
室温可调谐等离子体增强石墨烯太赫兹光电探测器
  • 批准号:
    1309750
  • 财政年份:
    2013
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Testing Gravity via Lunar Laser Ranging: APOLLO Analysis and Acquisition
通过月球激光测距测试重力:APOLLO 分析和采集
  • 批准号:
    1068879
  • 财政年份:
    2011
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Nanoporous Silicon Optical Waveguide Cavities for Real-Time Biological Sensing
用于实时生物传感的纳米多孔硅光波导腔
  • 批准号:
    0932673
  • 财政年份:
    2009
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
A Comprehensive Probe of Gravity via Lunar Laser Ranging
通过月球激光测距进行综合重力探测
  • 批准号:
    0602507
  • 财政年份:
    2007
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
CAREER: Resonant Cavity Nonlinear Photodetectors for Optical Signal Processing
职业:用于光信号处理的谐振腔非线性光电探测器
  • 批准号:
    0546928
  • 财政年份:
    2006
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Probing Fundamental Gravity via Lunar Laser Ranging
通过月球激光测距探测基本重力
  • 批准号:
    0245061
  • 财政年份:
    2004
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant

相似国自然基金

Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Chinese Physics B
  • 批准号:
    11224806
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Science China-Physics, Mechanics & Astronomy
  • 批准号:
    11224804
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Frontiers of Physics 出版资助
  • 批准号:
    11224805
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Chinese physics B
  • 批准号:
    11024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

New Physics in Artificial Spin Ice via Materials Innovation
通过材料创新实现人造旋转冰的新物理
  • 批准号:
    2419407
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
CAREER: Accelerating Scientific Discovery via Deep Learning with Strong Physics Inductive Biases
职业:通过具有强物理归纳偏差的深度学习加速科学发现
  • 批准号:
    2338909
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Exploring new physics beyond the standard model via neutrino
通过中微子探索标准模型之外的新物理
  • 批准号:
    23K03392
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Continuous Flow Chemistry of Microelectronics Polymers via Combined Physics-based and Machine Learning Models
职业:通过基于物理和机器学习相结合的微电子聚合物的连续流动化学
  • 批准号:
    2238147
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
New Physics in Artificial Spin Ice via Materials Innovation
通过材料创新实现人造旋转冰的新物理学
  • 批准号:
    2310275
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Search for physics beyond the Standard Model via generation mixing of charged leptons using a high intensity muon source
通过使用高强度μ子源生成带电轻子的混合来搜索超出标准模型的物理现象
  • 批准号:
    22H04941
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
RUI:Probing Subatomic Physics via Lepton Interactions
RUI:通过轻子相互作用探索亚原子物理
  • 批准号:
    2209421
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Strengthening Physics Achievement via Research and Collaboration (SPARC)
通过研究与合作加强物理成就 (SPARC)
  • 批准号:
    2121240
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Investigation of New Physics via matter-antimatter asymmetries
通过物质-反物质不对称性研究新物理学
  • 批准号:
    DP210102831
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Projects
Exploring new physics via the multi-faceted examination of the lepton number violation
通过对轻子数违规的多方面检查探索新物理学
  • 批准号:
    21J11444
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了