Testing Gravity via Lunar Laser Ranging: APOLLO Analysis and Acquisition

通过月球激光测距测试重力:APOLLO 分析和采集

基本信息

  • 批准号:
    1068879
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-12-01 至 2016-11-30
  • 项目状态:
    已结题

项目摘要

The recently built Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) has become the premier lunar laser ranging (LLR) facility in the world, delivering one-millimeter range precision between Earth and Moon as a way to test General Relativity. General Relativity makes specific predictions about the shape of the lunar orbit, so that we may use the Moon as a laboratory, made possible by the reflectors left on the Moon by the Apollo astronauts and unmanned Soviet rovers. The goal of this work is to extend high-quality LLR observations over an additional three-year period, simultaneously collecting calibrated measurements of local gravity well enough to determine site displacements at the millimeter level. In tandem, an intensive effort will be initiated to advance the solar system model to a state that can take advantage of millimeter-quality data. It is by comparison to a complete and sophisticated model that questions relating to gravity, geophysics, and lunar physics can be explored. Though not the main focus, knowledge of the lunar interior stands to gain the most from APOLLO, as the experiment routinely acquires 4 to 5 reflectors in one session, providing exquisite measurements of the lunar orientation and distortion. But this refined knowledge of the moon will also facilitate understanding of how the moon moves in its orbit, as such information is crucial to determining the path of the Moon's center of mass through space.LLR tests many fundamental aspects of gravity, like the equivalence principle, the constancy of gravity, gravitomagnetism, and the inverse-square law. Improving our knowledge of gravity therefore informs a diverse range of cosmologists, astrophysicists, particle physicists, and string theorists. This effort will also contribute to Earth and planetary science, especially via the inclusion of the superconducting gravimeter data. The open-source solar-system analysis code emerging from the project will provide an interesting platform for analyzing a wide range of data sets, including radar ranging in the solar system, Doppler radar to spacecraft around the solar system, pulsar timing experiments, etc. The same platform can form the basis of covariant studies for future proposed space missions that aim to test fundamental physics. Additionally, graduate student and postdoctoral training is a valuable component of the total effort. Finally, APOLLO will continue its strong tradition of public outreach, including featured appearances on popular television shows.
最近建成的阿帕奇点天文台月球激光测距操作 (APOLLO) 已成为世界上首屈一指的月球激光测距 (LLR) 设施,可在地球和月球之间提供一毫米的测距精度,作为测试广义相对论的一种方式。广义相对论对月球轨道的形状做出了具体的预测,这样我们就可以将月球用作实验室,这通过阿波罗宇航员和苏联无人驾驶漫游车留在月球上的反射镜成为可能。这项工作的目标是将高质量的 LLR 观测再延长三年,同时收集足够好的局部重力校准测量结果,以确定毫米级的场地位移。与此同时,我们将开展大量工作,将太阳系模型推进到可以利用毫米级质量数据的状态。通过与完整而复杂的模型进行比较,可以探索与重力、地球物理学和月球物理学相关的问题。尽管不是主要焦点,但对月球内部的了解将从 APOLLO 中获益最多,因为该实验通常会在一次实验中获取 4 到 5 个反射器,从而提供对月球方向和畸变的精确测量。但这种对月球的精确了解也将有助于理解月球如何在其轨道上运动,因为这些信息对于确定月球质心在太空中的路径至关重要。LLR 测试了重力的许多基本方面,如等效原理、重力恒常性、引力磁学和平方反比定律。因此,提高我们对引力的认识可以为各种宇宙学家、天体物理学家、粒子物理学家和弦理论家提供信息。这项努力还将为地球和行星科学做出贡献,特别是通过纳入超导重力计数据。该项目中出现的开源太阳系分析代码将为分析各种数据集提供一个有趣的平台,包括太阳系中的雷达测距、太阳系周围航天器的多普勒雷达、脉冲星定时实验等。同一平台可以为未来拟议的旨在测试基础物理的太空任务奠定协变研究的基础。此外,研究生和博士后培训是整个工作的重要组成部分。最后,APOLLO 将继续其强大的公众宣传传统,包括在热门电视节目中露面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Murphy其他文献

Sustained Improvement in Neonatal Intensive Care Unit Safety Attitudes After Teamwork Training
团队合作培训后新生儿重症监护室安全态度持续改善
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Thomas Murphy;A. Laptook;Jesse Bender
  • 通讯作者:
    Jesse Bender
733 DIFFERENTIAL EXPRESSION OF PROSTAGLANDIN RECEPTORS IN PROSTATE CANCER: A NOVEL THERAPEUTIC TARGET?
  • DOI:
    10.1016/j.juro.2011.02.1702
  • 发表时间:
    2011-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hosea Huang;Ping Shu;Thomas Murphy;Seena Aisner;Mark Jordan
  • 通讯作者:
    Mark Jordan
EN-482891-001 "BLIND SIDE” MAPPING OF UNIDIRECTIONAL ACCESSORY PATHWAYS
EN-482891-001“单向附件通道的盲区”映射
  • DOI:
    10.1016/j.hrthm.2024.03.297
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
    5.700
  • 作者:
    Thomas Murphy;Ryle Przybylowicz;Jose Lozano Garcia;Francis T. Phan;Saket Sanghai;Charles A. Henrikson;Seshadri Balaji;Eric Stecker
  • 通讯作者:
    Eric Stecker
High-Performance Computing Education
高性能计算教育
  • DOI:
    10.1109/mcse.2008.132
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Scott A. Lathrop;Thomas Murphy
  • 通讯作者:
    Thomas Murphy
On-orbit operations summary for the Deformable Mirror Demonstration Mission (DeMi) CubeSat
可变形镜演示任务(DeMi)立方体卫星在轨运行总结
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Morgan;Sophia K. Vlahakis;Ewan S Douglas;Gregory Allan;Paula do Vale Pereira;M. Egan;G. Fűrész;Jennifer N. Gubner;Christian A. Haughwout;Bobby G. Holden;J. Merk;Thomas Murphy;L. Pogorelyuk;D. Roascio;Yinzi Xin;K. Cahoy
  • 通讯作者:
    K. Cahoy

Thomas Murphy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Murphy', 18)}}的其他基金

Testing Gravity Using Millimeter Accuracy Data from APOLLO
使用 APOLLO 的毫米级精度数据测试重力
  • 批准号:
    1708215
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
MRI: Development of Ultrafast Near-Field Scanning Optical Microscope
MRI:超快近场扫描光学显微镜的开发
  • 批准号:
    1828155
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Gravitational Physics via Lunar Laser Ranging: Optimizing Data Quality
通过月球激光测距的引力物理:优化数据质量
  • 批准号:
    1404491
  • 财政年份:
    2015
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Room Temperature Tunable Plasmonic-Enhanced Graphene Terahertz Photodetectors
室温可调谐等离子体增强石墨烯太赫兹光电探测器
  • 批准号:
    1309750
  • 财政年份:
    2013
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Nanoporous Silicon Optical Waveguide Cavities for Real-Time Biological Sensing
用于实时生物传感的纳米多孔硅光波导腔
  • 批准号:
    0932673
  • 财政年份:
    2009
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
A Comprehensive Probe of Gravity via Lunar Laser Ranging
通过月球激光测距进行综合重力探测
  • 批准号:
    0602507
  • 财政年份:
    2007
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
CAREER: Resonant Cavity Nonlinear Photodetectors for Optical Signal Processing
职业:用于光信号处理的谐振腔非线性光电探测器
  • 批准号:
    0546928
  • 财政年份:
    2006
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Probing Fundamental Gravity via Lunar Laser Ranging
通过月球激光测距探测基本重力
  • 批准号:
    0245061
  • 财政年份:
    2004
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Study of both the construction of quantum gravity via coarse-graining of gauge theory and energy on curved spacetime
研究通过粗粒度规范理论构建量子引力和弯曲时空能量
  • 批准号:
    22K03596
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidating the plasma membrane locazation mechanism of a key gravity signaling factor via its phosphorylation
通过磷酸化阐明关键重力信号因子的质膜定位机制
  • 批准号:
    20K15826
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Computational Approach to Quantum Gravity via Holography
通过全息术计算量子引力的方法
  • 批准号:
    ST/R003599/2
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Fellowship
Study of gauge gravity duality via flow equation
基于流量方程的规范重力二象性研究
  • 批准号:
    19K03847
  • 财政年份:
    2019
  • 资助金额:
    $ 75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Computational Approach to Quantum Gravity via Holography
通过全息术计算量子引力的方法
  • 批准号:
    ST/R003599/1
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Fellowship
Gravity Dynamics via Path-integral Optimizations of Quantum Field Theories
通过量子场论路径积分优化的重力动力学
  • 批准号:
    18K18766
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Study of Planck scale space-times via an effective gravity theory in the microscopic regime
通过微观体系中的有效引力理论研究普朗克尺度时空
  • 批准号:
    17K14294
  • 财政年份:
    2017
  • 资助金额:
    $ 75万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Troposphere-Ionosphere Coupling via Atmospheric Gravity Waves
通过大气重力波的对流层-电离层耦合
  • 批准号:
    1341557
  • 财政年份:
    2015
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Properties of quantum gravity in AdS 3 via conformal field theories in two dimensions
通过二维共形场论研究 AdS 3 中的量子引力特性
  • 批准号:
    464843-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 75万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Solving Condensed Matter, Nuclear and Gravity Problems via String and Gauge/Gravity Duality
通过弦和规范/重力对偶性解决凝聚态物质、核和重力问题
  • 批准号:
    25800143
  • 财政年份:
    2013
  • 资助金额:
    $ 75万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了