Link homology, cohomological operations, and categorification at roots of unity
将同调、上同调运算和分类联系到统一根
基本信息
- 批准号:1406065
- 负责人:
- 金额:$ 33.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project aims to study categorification, a relatively new branch of mathematics that has been successful at lifting previously known objects to new structural levels. This includes transforming combinatorial systems that involve natural numbers into higher-order structures built out of vector spaces whose dimensions are those numbers, while vector spaces themselves lift to categories. Integers are consistently lifted to complexes of vector spaces. Link homology theories constitute such a lift of quantum link invariants. The latter boast deep relations to quantum field theory, statistical mechanics, and many areas of mathematics, and categorifying link homology extends these relations and produces new ones at a higher structural level. The proposal will investigate categorification at roots of unity, which should lead to such structural lifting of the Chern-Simons theory and quantum 3-manifold invariants and, eventually, parts of conformal field theory. The project also aims to enhance and unite recent discoveries of cohomological operations on link homologies. These operations rigidify link homology groups and exhibit connections to algebraic topology; in the latter some of most profound result required studying not just homology groups and their extraordinary counterparts, but entire systems of cohomological operations on them. It is likely that understanding the full algebra of cohomological operations on link homology will significanly advance this subject as well as many areas of mathematics and mathematical physics in its proximity. The project will investigate categorification and link homology, find cohomological operations that rigidify link homology theories, and advance categorification at roots of unity for quantum groups, their representations, and quantum link and 3-manifold invariants. Known cohomological operations are likely just a small part of much bigger algebras of cohomological operations acting on various link homology theories, in particular, on Khovanov-Rozansky and Webster homology groups. Recent work on categorification of quantum groups at roots of unity points to existence of a deep but undeveloped theory, including an analogue of homological algebra where the role of complexes is played by p-complexes. One of the project's goals is to categorify the Jones polynomial and other quantum link invariants at prime roots of unity by further developing categorification of quantum groups and their representations within the framework of p-complexes and hopfological algebra.
这个研究项目旨在研究分类,这是一个相对较新的数学分支,已经成功地将先前已知的对象提升到新的结构水平。这包括将涉及自然数的组合系统转换为由维度为这些数字的向量空间构建的高阶结构,而向量空间本身则提升为范畴。整数被一致地提升为向量空间的复形。链同调理论构成了量子链不变量的这样一种提升。后者与量子场论、统计力学和许多数学领域有着深刻的联系,分类链接同调扩展了这些关系,并在更高的结构水平上产生了新的关系。该提案将从统一性的根源进行分类,这应该会导致对Chern-Simons理论和量子3-流形不变量的结构性提升,并最终导致部分共形场论。该项目还旨在加强和统一关于链接同调的上同调运算的最新发现。这些运算使链同调群刚性,并显示出与代数拓扑学的联系;在后者中,一些最深刻的结果不仅需要研究同调群和它们的特殊对应,而且需要研究它们上的上同调运算的整个系统。理解环同调上同调运算的全代数将极大地推进这一学科,以及数学和数学物理的许多领域。该项目将研究分类和链接同调,找到使链接同调理论僵化的上同调运算,并推进量子群、它们的表示以及量子链接和3-流形不变量的单位根分类。已知的上同调运算可能只是作用于各种链同调理论的更大的上同调运算代数的一小部分,特别是作用于Khovanov-Rozansky和Webster同调群的上同调运算。最近关于单位根处量子群分类的工作表明,存在一个深刻但尚未发展的理论,包括一种类似于同调代数的理论,其中复合体的作用由p-复合体扮演。该项目的目标之一是通过在p-复形和Hopfology代数的框架内进一步发展量子群及其表示的分类,对琼斯多项式和其他位于单位素根的量子链接不变量进行分类。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Khovanov其他文献
How to categorify the ring of integers localized at two
如何对定域于二的整数环进行分类
- DOI:
10.4171/qt/130 - 发表时间:
2017-02 - 期刊:
- 影响因子:1.1
- 作者:
Yin Tian;Mikhail Khovanov - 通讯作者:
Mikhail Khovanov
On the universal pairing for 2-complexes
关于2-复合体的通用配对
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mikhail Khovanov;Vyacheslav Krushkal;John Nicholson - 通讯作者:
John Nicholson
A Topological Theory for Unoriented SL(4) Foams
无取向SL(4)泡沫的拓扑理论
- DOI:
10.1007/s00009-024-02591-7 - 发表时间:
2024 - 期刊:
- 影响因子:1.1
- 作者:
Mikhail Khovanov;J. Przytycki;Louis;Marithania Silvero - 通讯作者:
Marithania Silvero
DOODLE GROUPS
涂鸦组
- DOI:
10.1090/s0002-9947-97-01706-6 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Mikhail Khovanov - 通讯作者:
Mikhail Khovanov
Mikhail Khovanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Khovanov', 18)}}的其他基金
Foams, Categorification, and Link Homology
泡沫、分类和链接同源性
- 批准号:
2204033 - 财政年份:2022
- 资助金额:
$ 33.25万 - 项目类别:
Standard Grant
Collaborative Research: New Structures in Link Homology and Categorification
合作研究:链接同源性和分类的新结构
- 批准号:
1807425 - 财政年份:2018
- 资助金额:
$ 33.25万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Categorifying Quantum Three-Manifold Invariants
FRG:合作研究:量子三流形不变量的分类
- 批准号:
1664255 - 财政年份:2017
- 资助金额:
$ 33.25万 - 项目类别:
Standard Grant
Link homology and categorification of quantum groups
链接量子群的同源性和分类
- 批准号:
1005750 - 财政年份:2010
- 资助金额:
$ 33.25万 - 项目类别:
Continuing Grant
EMSW21-RTG: New Techniques in Low-Dimensional Topology and Geometry
EMSW21-RTG:低维拓扑和几何新技术
- 批准号:
0739392 - 财政年份:2008
- 资助金额:
$ 33.25万 - 项目类别:
Continuing Grant
Collaborative Research: Categorification of Link and 3-Manifold Invariants
合作研究:链接和三流形不变量的分类
- 批准号:
0706924 - 财政年份:2007
- 资助金额:
$ 33.25万 - 项目类别:
Continuing Grant
Homological algebra and topology in three and four dimensions
三维和四维的同调代数和拓扑
- 批准号:
0602555 - 财政年份:2005
- 资助金额:
$ 33.25万 - 项目类别:
Standard Grant
Homological algebra and topology in three and four dimensions
三维和四维的同调代数和拓扑
- 批准号:
0407784 - 财政年份:2004
- 资助金额:
$ 33.25万 - 项目类别:
Standard Grant
Homological algebra of quantum invariants in dimension four
四维量子不变量的同调代数
- 批准号:
0104139 - 财政年份:2001
- 资助金额:
$ 33.25万 - 项目类别:
Standard Grant
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Strategies for next-generation flavivirus vaccine development
下一代黄病毒疫苗开发策略
- 批准号:
10751480 - 财政年份:2024
- 资助金额:
$ 33.25万 - 项目类别:
Study on Contact Homology by String Topology
弦拓扑接触同调研究
- 批准号:
23KJ1238 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Role and Theranostics Potential of Enolase in Prostate Cancer Health Disparities
烯醇化酶在前列腺癌健康差异中的作用和治疗潜力
- 批准号:
10649164 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:
Natural products inhibitors targeting homology-directed DNA repair for cancer therapy
针对癌症治疗的同源定向 DNA 修复的天然产物抑制剂
- 批准号:
10651048 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:
Molecular mechanism of membrane association of Bruton's Tyrosine Kinase
布鲁顿酪氨酸激酶膜缔合的分子机制
- 批准号:
10604872 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:
Targeting SHP-1 through a newfound metabolite-regulated cysteine activation site
通过新发现的代谢物调节的半胱氨酸激活位点靶向 SHP-1
- 批准号:
10802649 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:
Targeting NuoD for the treatment of H. pylori
靶向 NuoD 治疗幽门螺杆菌
- 批准号:
10659783 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
- 批准号:
10636329 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:
Identifying Genetic Contributions to Adverse Drug Reactions
确定遗传因素对药物不良反应的影响
- 批准号:
10730434 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:
Characterization of disulfide modified diabetogenic neoepitopes
二硫键修饰的糖尿病新表位的表征
- 批准号:
10720644 - 财政年份:2023
- 资助金额:
$ 33.25万 - 项目类别:














{{item.name}}会员




