EMSW21-RTG: New Techniques in Low-Dimensional Topology and Geometry
EMSW21-RTG:低维拓扑和几何新技术
基本信息
- 批准号:0739392
- 负责人:
- 金额:$ 249.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS 0739392Principal Investigator: John W. Morgan, Mikhail G. Khovanov,Walter D. Neumann, Peter S. OzsvathLow-dimensional topology is undergoing a revolution thanks to aninfusion of new techniques from other areas, includingmathematical physics, representation theory, holomorphic curvetheory, analysis, and algebraic geometry. This fusion oftechniques has led to an explosion of results and also newavenues of research. Examples of this include Perelman's recentproof of the Poincare conjecture using methods from geometricanalysis; Donaldson's gauge theory approach to constructinvariants for smooth four-manifolds, and the subsequentdiscovery of the Seiberg-Witten equations; invariants of threeand four-manifolds defined via holomorphic curves; the quantumpolynomial invariants for knots and, more recently, theircategorifications. This project aims to train the nextgeneration of researchers in these exciting and vibrant subjects,including graduate students and postdocs; and also to widelydisseminate the latest discoveries in these fields.The aim of this proposal is to stimulate the research trainingenvironment at Columbia University in the new developments inlow-dimensional topology and geometry. Many of these developmentshave been pioneered by faculty at Columbia. The objectives ofthis program are: (i) to increase the number of undergraduateswho will pursue graduate studies in this exciting and active areaof mathematics, and to ensure that their training equips themwell for graduate studies; (ii) to broaden and strengthen theresearch background of the graduate students at Columbia, so thatthey are better equipped to fulfill their research potential, andcontribute meaningfully to this rapidly-changing subject; (iii)to prepare the postdoctoral associates for more independentresearch in this area; (iv) to foster communication among allstrata in the research group at Columbia, and in fact to trainthe associated students and postdocs in expository skills,teaching, and research; and (v) to foster the dissemination ofknowledge in this field from Columbia University to the widermathematical community.
摘要奖:DMS 0739392主要研究者:John W.作者声明:Michael G.作者:Walter D.作者:Peter S.低维拓扑学正在经历一场革命,这要归功于来自其他领域的新技术的注入,包括数学物理,表示论,全纯曲线理论,分析和代数几何。这种技术的融合导致了结果的爆炸,也带来了新的研究场所。 这方面的例子包括佩雷尔曼最近的证明庞加莱猜想使用的方法从geometricanalysis;唐纳森的规范理论的方法来构建光滑的四流形的variants,和随后发现的塞伯格-威滕方程;不变量的threeand四流形定义通过全纯曲线; quantumpolynomial不变量的结,最近,theircalculations。 该项目旨在培养下一代研究人员,包括研究生和博士后,并广泛传播在这些领域的最新发现,该建议的目的是激发哥伦比亚大学在低维拓扑学和几何学新发展方面的研究培训环境。其中许多发展都是由哥伦比亚大学的教师开创的。该计划的目标是:(i)增加本科生谁将继续研究生课程在这一令人兴奋的和活跃的数学领域,并确保他们的培训装备他们以及研究生课程;(ii)扩大和加强研究生在哥伦比亚的研究背景,使他们更好地装备,以实现他们的研究潜力,并有意义地贡献这一迅速变化的主题;(iii)为博士后研究员在这一领域进行更独立的研究做好准备;(iv)促进哥伦比亚研究小组各阶层之间的交流,实际上是在短期技能、教学和研究方面培训相关的学生和博士后;(v)促进哥伦比亚大学向更广泛的数学界传播这一领域的知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Khovanov其他文献
How to categorify the ring of integers localized at two
如何对定域于二的整数环进行分类
- DOI:
10.4171/qt/130 - 发表时间:
2017-02 - 期刊:
- 影响因子:1.1
- 作者:
Yin Tian;Mikhail Khovanov - 通讯作者:
Mikhail Khovanov
On the universal pairing for 2-complexes
关于2-复合体的通用配对
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mikhail Khovanov;Vyacheslav Krushkal;John Nicholson - 通讯作者:
John Nicholson
A Topological Theory for Unoriented SL(4) Foams
无取向SL(4)泡沫的拓扑理论
- DOI:
10.1007/s00009-024-02591-7 - 发表时间:
2024 - 期刊:
- 影响因子:1.1
- 作者:
Mikhail Khovanov;J. Przytycki;Louis;Marithania Silvero - 通讯作者:
Marithania Silvero
DOODLE GROUPS
涂鸦组
- DOI:
10.1090/s0002-9947-97-01706-6 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Mikhail Khovanov - 通讯作者:
Mikhail Khovanov
Mikhail Khovanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Khovanov', 18)}}的其他基金
Foams, Categorification, and Link Homology
泡沫、分类和链接同源性
- 批准号:
2204033 - 财政年份:2022
- 资助金额:
$ 249.93万 - 项目类别:
Standard Grant
Collaborative Research: New Structures in Link Homology and Categorification
合作研究:链接同源性和分类的新结构
- 批准号:
1807425 - 财政年份:2018
- 资助金额:
$ 249.93万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Categorifying Quantum Three-Manifold Invariants
FRG:合作研究:量子三流形不变量的分类
- 批准号:
1664255 - 财政年份:2017
- 资助金额:
$ 249.93万 - 项目类别:
Standard Grant
Link homology, cohomological operations, and categorification at roots of unity
将同调、上同调运算和分类联系到统一根
- 批准号:
1406065 - 财政年份:2014
- 资助金额:
$ 249.93万 - 项目类别:
Continuing Grant
Link homology and categorification of quantum groups
链接量子群的同源性和分类
- 批准号:
1005750 - 财政年份:2010
- 资助金额:
$ 249.93万 - 项目类别:
Continuing Grant
Collaborative Research: Categorification of Link and 3-Manifold Invariants
合作研究:链接和三流形不变量的分类
- 批准号:
0706924 - 财政年份:2007
- 资助金额:
$ 249.93万 - 项目类别:
Continuing Grant
Homological algebra and topology in three and four dimensions
三维和四维的同调代数和拓扑
- 批准号:
0602555 - 财政年份:2005
- 资助金额:
$ 249.93万 - 项目类别:
Standard Grant
Homological algebra and topology in three and four dimensions
三维和四维的同调代数和拓扑
- 批准号:
0407784 - 财政年份:2004
- 资助金额:
$ 249.93万 - 项目类别:
Standard Grant
Homological algebra of quantum invariants in dimension four
四维量子不变量的同调代数
- 批准号:
0104139 - 财政年份:2001
- 资助金额:
$ 249.93万 - 项目类别:
Standard Grant
相似海外基金
RTG: Numbers, Geometry, and Symmetry at Berkeley
RTG:伯克利分校的数字、几何和对称性
- 批准号:
2342225 - 财政年份:2024
- 资助金额:
$ 249.93万 - 项目类别:
Continuing Grant
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
- 批准号:
2342254 - 财政年份:2024
- 资助金额:
$ 249.93万 - 项目类别:
Continuing Grant
RTG: Frontiers in Applied Analysis
RTG:应用分析前沿
- 批准号:
2342349 - 财政年份:2024
- 资助金额:
$ 249.93万 - 项目类别:
Continuing Grant
RTG: Geometry, Group Actions, and Dynamics at Wisconsin
RTG:威斯康星州的几何、群体行动和动力学
- 批准号:
2230900 - 财政年份:2023
- 资助金额:
$ 249.93万 - 项目类别:
Continuing Grant
RTG: Vertically Integrated Interdisciplinary Training in Mathematics for Human Health
RTG:人类健康数学垂直整合跨学科培训
- 批准号:
2230790 - 财政年份:2023
- 资助金额:
$ 249.93万 - 项目类别:
Continuing Grant
RTG: Research Training Group in Logic and its Application
RTG:逻辑及其应用研究培训小组
- 批准号:
2231414 - 财政年份:2023
- 资助金额:
$ 249.93万 - 项目类别:
Continuing Grant
RTG: The Mathematics of Quantum Information Science
RTG:量子信息科学的数学
- 批准号:
2231533 - 财政年份:2023
- 资助金额:
$ 249.93万 - 项目类别:
Continuing Grant
RTG: Numerical Mathematics and Scientific Computing
RTG:数值数学和科学计算
- 批准号:
2231482 - 财政年份:2023
- 资助金额:
$ 249.93万 - 项目类别:
Continuing Grant
RTG: Topology, Representation Theory, and Mathematical Physics at Louisiana State University
RTG:路易斯安那州立大学拓扑学、表示论和数学物理
- 批准号:
2231492 - 财政年份:2023
- 资助金额:
$ 249.93万 - 项目类别:
Continuing Grant
RTG: Linked via L-functions: training versatile researchers across number theory
RTG:通过 L 函数链接:跨数论培训多才多艺的研究人员
- 批准号:
2231514 - 财政年份:2023
- 资助金额:
$ 249.93万 - 项目类别:
Continuing Grant