Homological algebra and topology in three and four dimensions
三维和四维的同调代数和拓扑
基本信息
- 批准号:0407784
- 负责人:
- 金额:$ 4.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2005-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims to develop and understand homological invariants of three- and four-dimensional topological objects. Such invariants include Donaldson-Floer and Seiberg-Witten theories, and several bigraded homology theories of links. These theories have the Alexander and Jones polynomials as their Euler characteristics, as well as the quantum sl(3) link invariant. We would like to construct a bigraded homology theory of links for each complex simple Lie algebra g, with components of links colored by irreducible representation of g. The Euler characteristic of the theory should be the quantum invariant of colored links associated with the quantum deformation of g, and the theory should be functorial (extend to cobordisms of links). Our other goals include better understanding of the relations between existing theories, and an investigation of the categories that appear when link homology theories are extended to tangles. Topological objects in dimensions three and four have special properties and a number of connections to algebra and analysis that do not generalize to other dimensions. Three-dimensional objects, including knots, links, and three-manifolds (the latter are global objects glued out of three-dimensional spaces), admit combinatorial invariants, also known as quantum invariants, that come from algebraic structures and can also be recovered from two-dimensional conformal field theories. Quantum invariants of four-dimensional objects, for the most part, are not known to have combinatorial descriptions, and their definition and computation requires analytical tools. We would like to bridge this gap by constructing new four-dimensional invariants that are combinatorial, and, second, by finding combinatorial description of known analytical invariants of four-manifolds, including Donaldson-Floer and Seiberg-Witten invariants.
该项目旨在开发和理解三维和四维拓扑对象的同调不变量。这样的不变量包括Donaldson-Floer和Seiberg-Witten理论,以及几个关于链环的双阶同调理论。这些理论具有亚历山大和琼斯多项式作为它们的欧拉特征,以及量子sl(3)链不变量。我们想对每个复单李代数g构造一个链环的双阶同调理论,链环的分支由g的不可约表示着色。该理论的欧拉特征应该是与g的量子形变相关的有色链接的量子不变量,并且该理论应该是函子的(扩展到链接的协边)。我们的其他目标包括更好地理解现有理论之间的关系,并调查的类别时出现的链接同源性理论扩展到缠结。三维和四维中的拓扑对象具有特殊的性质以及与代数和分析的许多联系,这些联系并不推广到其他维度。三维物体,包括纽结、链环和三维流形(后者是从三维空间中粘出来的全局物体),承认组合不变量,也称为量子不变量,它们来自代数结构,也可以从二维共形场论中恢复。在大多数情况下,四维物体的量子不变量并没有组合描述,它们的定义和计算需要分析工具。我们想通过构造新的四维组合不变量来弥合这一差距,其次,通过寻找已知的四维流形分析不变量的组合描述,包括Donaldson-Floer和Seiberg-Witten不变量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikhail Khovanov其他文献
How to categorify the ring of integers localized at two
如何对定域于二的整数环进行分类
- DOI:
10.4171/qt/130 - 发表时间:
2017-02 - 期刊:
- 影响因子:1.1
- 作者:
Yin Tian;Mikhail Khovanov - 通讯作者:
Mikhail Khovanov
On the universal pairing for 2-complexes
关于2-复合体的通用配对
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mikhail Khovanov;Vyacheslav Krushkal;John Nicholson - 通讯作者:
John Nicholson
A Topological Theory for Unoriented SL(4) Foams
无取向SL(4)泡沫的拓扑理论
- DOI:
10.1007/s00009-024-02591-7 - 发表时间:
2024 - 期刊:
- 影响因子:1.1
- 作者:
Mikhail Khovanov;J. Przytycki;Louis;Marithania Silvero - 通讯作者:
Marithania Silvero
DOODLE GROUPS
涂鸦组
- DOI:
10.1090/s0002-9947-97-01706-6 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Mikhail Khovanov - 通讯作者:
Mikhail Khovanov
Mikhail Khovanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikhail Khovanov', 18)}}的其他基金
Foams, Categorification, and Link Homology
泡沫、分类和链接同源性
- 批准号:
2204033 - 财政年份:2022
- 资助金额:
$ 4.12万 - 项目类别:
Standard Grant
Collaborative Research: New Structures in Link Homology and Categorification
合作研究:链接同源性和分类的新结构
- 批准号:
1807425 - 财政年份:2018
- 资助金额:
$ 4.12万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Categorifying Quantum Three-Manifold Invariants
FRG:合作研究:量子三流形不变量的分类
- 批准号:
1664255 - 财政年份:2017
- 资助金额:
$ 4.12万 - 项目类别:
Standard Grant
Link homology, cohomological operations, and categorification at roots of unity
将同调、上同调运算和分类联系到统一根
- 批准号:
1406065 - 财政年份:2014
- 资助金额:
$ 4.12万 - 项目类别:
Continuing Grant
Link homology and categorification of quantum groups
链接量子群的同源性和分类
- 批准号:
1005750 - 财政年份:2010
- 资助金额:
$ 4.12万 - 项目类别:
Continuing Grant
EMSW21-RTG: New Techniques in Low-Dimensional Topology and Geometry
EMSW21-RTG:低维拓扑和几何新技术
- 批准号:
0739392 - 财政年份:2008
- 资助金额:
$ 4.12万 - 项目类别:
Continuing Grant
Collaborative Research: Categorification of Link and 3-Manifold Invariants
合作研究:链接和三流形不变量的分类
- 批准号:
0706924 - 财政年份:2007
- 资助金额:
$ 4.12万 - 项目类别:
Continuing Grant
Homological algebra and topology in three and four dimensions
三维和四维的同调代数和拓扑
- 批准号:
0602555 - 财政年份:2005
- 资助金额:
$ 4.12万 - 项目类别:
Standard Grant
Homological algebra of quantum invariants in dimension four
四维量子不变量的同调代数
- 批准号:
0104139 - 财政年份:2001
- 资助金额:
$ 4.12万 - 项目类别:
Standard Grant
相似国自然基金
李代数的权表示
- 批准号:10371120
- 批准年份:2003
- 资助金额:13.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CDS&E-MSS: Exact Homological Algebra for Computational Topology
合作研究:CDS
- 批准号:
1854703 - 财政年份:2019
- 资助金额:
$ 4.12万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Exact Homological Algebra for Computational Topology
合作研究:CDS
- 批准号:
1854748 - 财政年份:2019
- 资助金额:
$ 4.12万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Exact Homological Algebra for Computational Topology
合作研究:CDS
- 批准号:
1854683 - 财政年份:2019
- 资助金额:
$ 4.12万 - 项目类别:
Continuing Grant
Homological algebra and topology in three and four dimensions
三维和四维的同调代数和拓扑
- 批准号:
0602555 - 财政年份:2005
- 资助金额:
$ 4.12万 - 项目类别:
Standard Grant
Homological Algebra Methods in Topology and Combinatorics
拓扑和组合学中的同调代数方法
- 批准号:
0513918 - 财政年份:2005
- 资助金额:
$ 4.12万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Topology, Algebraic Topology and Homological Algebra
数学科学:几何拓扑、代数拓扑和同调代数
- 批准号:
8303251 - 财政年份:1983
- 资助金额:
$ 4.12万 - 项目类别:
Continuing Grant
Geometric Topology, Algebraic Topology and Homological Algebra
几何拓扑、代数拓扑和同调代数
- 批准号:
8002730 - 财政年份:1980
- 资助金额:
$ 4.12万 - 项目类别:
Continuing Grant
Geometric Topology, Algebraic Topology and Homological Algebra
几何拓扑、代数拓扑和同调代数
- 批准号:
7701623 - 财政年份:1977
- 资助金额:
$ 4.12万 - 项目类别:
Continuing Grant
CONFERENCE ON ALGEBRAIC TOPOLOGY, CATEGORY THEORY AND HOMOLOGICAL ALGEBRA
代数拓扑、范畴论和同调代数会议
- 批准号:
7462685 - 财政年份:1974
- 资助金额:
$ 4.12万 - 项目类别:
APPLICATIONS OF DIFFERENTIAL HOMOLOGICAL ALGEBRA TO ALGEBRAIC TOPOLOGY
微分同调代数在代数拓扑中的应用
- 批准号:
7353463 - 财政年份:1973
- 资助金额:
$ 4.12万 - 项目类别: