Ricci Curvature and Geometric Analysis

里奇曲率和几何分析

基本信息

  • 批准号:
    1406259
  • 负责人:
  • 金额:
    $ 19.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

The goal of the proposal is to study various geometrically motivated equations and their applications. The proposal will mostly center around ideas involving Ricci curvature, however aspects of it will also involve harmonic maps, spectral analysis, metric-measure spaces, and stochastic analysis. Each of these topics is somehow concerned with the bending and intrinsic structure of higher dimensional geometries. In recent years much progress has been made in each of these areas, but there are a great deal of unknown questions which remain, the solutions of which would have applications in many branches of mathematics and physics. In all there are three parts to the proposal with nine projects and seven coauthors. Each project will discuss first progress expected to be made over the next year, and then goals past that.The first part of the proposal centers on studying the connections between Ricci curvature and the infinite dimensional analysis on path space. Recent breakthroughs have allowed researchers to realize that the two are intimately connected, and the hope is that further understanding in this area should open up new areas of research as well as solve many questions involving spaces with bounded Ricci curvature. There are two projects in this part of the proposal. The second part of the paper focuses on the regularity of manifolds with lower and bounded Ricci curvature. In particular, together with several co-authors the projects include the proving of new epsilon-regularity theorems for Einstein manifolds and showing that metric-measure spaces with lower Ricci curvature bounds are rectifiable. There are three projects in the second part of the proposal. The final part of the proposal includes four projects from various areas of geometric analysis. This includes a project in the very classical topic of elliptic equations on Euclidean space. It is surprising, but there are still many open questions in this area. In particular, the project focuses on the study of critical sets of such equations under very rough coefficients.
该提案的目标是研究各种几何驱动方程及其应用。 该提案将主要围绕涉及里奇曲率的想法,但它的各个方面也将涉及调和图、谱分析、度量测量空间和随机分析。 这些主题中的每一个都在某种程度上与高维几何的弯曲和内在结构有关。 近年来,这些领域都取得了很大进展,但仍然存在大量未知问题,这些问题的解决方案将在数学和物理学的许多分支中得到应用。 该提案总共分为三个部分,涉及九个项目和七位合著者。每个项目将讨论明年预计取得的第一个进展,然后是超越该进展的目标。提案的第一部分集中于研究里奇曲率和路径空间无限维分析之间的联系。 最近的突破让研究人员认识到两者是密切相关的,希望对这一领域的进一步理解能够开辟新的研究领域,并解决涉及有界里奇曲率空间的许多问题。 该提案的这一部分有两个项目。 本文的第二部分重点研究具有下界里奇曲率的流形的正则性。 特别是,与几位合著者一起,这些项目包括证明爱因斯坦流形的新 epsilon 正则定理,并表明具有下里奇曲率界的度量测量空间是可校正的。 该提案的第二部分共有三个项目。 该提案的最后部分包括来自几何分析各个领域的四个项目。 这包括欧几里得空间椭圆方程这一非常经典的主题的项目。 令人惊讶的是,但这一领域仍然存在许多悬而未决的问题。 特别是,该项目侧重于在非常粗糙的系数下研究此类方程的临界集。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aaron Naber其他文献

L2 curvature bounds on manifolds with bounded Ricci curvature
具有有界 Ricci 曲率的流形上的 L2 曲率界
  • DOI:
    10.4007/annals.2021.193.1.2
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    江文帅;Aaron Naber
  • 通讯作者:
    Aaron Naber
Sharp estimates on the first eigenvalue of the $$p$$ -Laplacian with negative Ricci lower bound
  • DOI:
    10.1007/s00209-014-1282-x
  • 发表时间:
    2014-02-15
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Aaron Naber;Daniele Valtorta
  • 通讯作者:
    Daniele Valtorta
Quantitative Reifenberg theorem for measures
  • DOI:
    10.1007/s00209-025-03743-5
  • 发表时间:
    2025-05-03
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Nick Edelen;Aaron Naber;Daniele Valtorta
  • 通讯作者:
    Daniele Valtorta
L2 curvature bounds on manifolds with bounded Ricci curvature
  • DOI:
    https://doi.org/10.4007/annals.2021.193.1.2
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    江文帅;Aaron Naber
  • 通讯作者:
    Aaron Naber

Aaron Naber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aaron Naber', 18)}}的其他基金

Singularities and Smoothness in Geometric Partial Differential Equations
几何偏微分方程中的奇异性和光滑性
  • 批准号:
    1809011
  • 财政年份:
    2018
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0903137
  • 财政年份:
    2009
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Fellowship Award

相似海外基金

Scalar curvature and geometric variational problems
标量曲率和几何变分问题
  • 批准号:
    2303624
  • 财政年份:
    2023
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Standard Grant
Geometric analysis of mean curvature flow with dynamic contact angle structure
动态接触角结构平均曲率流动的几何分析
  • 批准号:
    23K12992
  • 财政年份:
    2023
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Geometric analysis on graphs with Ricci curvature bounded from below
下界里奇曲率图的几何分析
  • 批准号:
    23K03103
  • 财政年份:
    2023
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Constant scalar curvature Kahler metrics of Poincare type and algebro-geometric stability
庞加莱型恒定标量曲率卡勒度量和代数几何稳定性
  • 批准号:
    23K19020
  • 财政年份:
    2023
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Study on geometric structures of curvature flows and submanifolds
曲率流和子流形的几何结构研究
  • 批准号:
    22K03303
  • 财政年份:
    2022
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric analysis on spaces equipped with modifications of the Ricci curvature
带有修正里奇曲率的空间的几何分析
  • 批准号:
    22K13915
  • 财政年份:
    2022
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Curvature, Topology, and Geometric Partial Differential Equations, with new tools from Applied Mathematics
职业:曲率、拓扑和几何偏微分方程,以及应用数学的新工具
  • 批准号:
    2142575
  • 财政年份:
    2022
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Continuing Grant
Geometric quantization and metrics with special curvature properties
几何量化和具有特殊曲率特性的度量
  • 批准号:
    RGPIN-2020-04683
  • 财政年份:
    2022
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric quantization and metrics with special curvature properties
几何量化和具有特殊曲率特性的度量
  • 批准号:
    RGPIN-2020-04683
  • 财政年份:
    2021
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric Variational Problems and Scalar Curvature
几何变分问题和标量曲率
  • 批准号:
    2202343
  • 财政年份:
    2021
  • 资助金额:
    $ 19.73万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了