Singularities and Smoothness in Geometric Partial Differential Equations
几何偏微分方程中的奇异性和光滑性
基本信息
- 批准号:1809011
- 负责人:
- 金额:$ 22.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The scientific goal of this project is to study various geometrically motivated equations and their applications. One area of investigation is energy-minimizing mappings between curved spaces (known as nonlinear harmonic maps) and their singular sets, i.e., points where the mapping ceases to be smooth. Another area of investigation is the structure of the spaces that arise as limits of smooth spaces with bounded curvature, and a third area is the regularity of solutions to the Yang-Mills equations which arise particle physics. The research project also touches on other mathematical subjects such as Reifenberg analysis, spectral analysis, stochastic analysis and metric-measure spaces. In each area, open problems which are at the forefront of the topic are being pursued. These are topics which have broad applications to many areas of mathematics and physics, and solutions to these problems would open doors to tackling the next generation of problems. Many parts of this project also involve the training of early-career researchers, as several lines of investigation involve collaboration with senior graduate students and postdoctoral scholars.The first part of this overall project is concerned with the energy identity and the W2,1-conjecture for nonlinear harmonic maps. Roughly, the energy identity is a conjectural picture which gives an explicit formula for the blow-up behavior of sequences of nonlinear harmonic maps. The W2,1-conjecture is the easily stated conjecture that stationary harmonic maps have a priori L1 estimates for their hessians. Valtorta and the PI have solved these conjectures for stationary Yang-Mills, but the methods do not work for harmonic maps, and the PI will solve the problems by other means. In another line of investigation, joint with Yu Wang, the PI will answer some open questions by Hardt and Lin on nonlinear harmonic maps. Roughly, the goal is show one can solve for stable harmonic maps in the class of strongly H1-mappings. The second part of the proposal would address issues involving the regularity of spaces with lower and bounded Ricci curvature. Together with Wenshuai Jiang the first project of this part would study the energy identity for limits of manifolds with bounded Ricci curvature. Though similar in spirit, the problem itself is actually very different from the harmonic map case. To begin with, the energy in this context is the L2 curvature form, and it has only been very recently that one even knows this is a bounded measure. Secondly, the predicted form of the defect measure in this context can be computed by the singularity behavior in the limit. Additionally, with Bob Haslhofer, the PI will study connections between bounded Ricci curvature and the analysis on path space. The PI will prove differential Harnack estimates for martingales on spaces with two sided Ricci curvature bounds. The solution to each of these problems involve the development of new techniques and ideas, which themselves one would expect to be even more interesting than the problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的科学目标是研究各种几何动机方程式及其应用。一个调查领域是在弯曲空间(称为非线性谐波图)之间的能量最小化映射及其奇异集合,即映射不再平滑的点。调查的另一个领域是作为曲率有界曲率的平滑空间限制的空间的结构,第三个区域是对Yang-Mills方程的溶液的规律性。该研究项目还涉及其他数学主题,例如Reifenberg分析,光谱分析,随机分析和度量测量空间。在每个领域,正在追求在该主题的最前沿的开放问题。这些主题在许多数学和物理学领域都有广泛的应用,解决这些问题将打开解决下一代问题的大门。该项目的许多部分还涉及对早期研究人员的培训,因为几项调查涉及与高级研究生和博士后学者的合作。该整体项目的第一部分与非线性和谐图的能源身份和W2,1-contionure有关。粗略地,能量身份是一种猜想的图片,为非线性谐波图序列的爆炸行为提供了明确的公式。 W2,1-重点是很容易指出的猜想,即固定的谐波图对其黑森人具有先验的L1估计。瓦尔托塔(Valtorta)和PI已解决了这些固定的阳米矿(Yang-Mills)的猜想,但是这些方法对谐波图不起作用,PI将通过其他方式解决问题。在另一项调查中,与王王的联合,PI将回答Hardt和Lin在非线性谐波图上的一些空旷问题。粗略地,目标是显示一个可以在强烈的H1映射类中求解稳定的谐波图。该提案的第二部分将解决涉及RICCI曲率较低和有限的空间规律性的问题。与Wenshuai Jiang一起,这部分的第一个项目将研究具有有界Ricci曲率的歧管限制的能量身份。尽管精神上相似,但问题本身实际上与谐波地图案例大不相同。首先,在这种情况下的能量是L2曲率形式,直到最近才知道这是一个有限的度量。其次,在这种情况下,缺陷度量的预测形式可以通过极限中的奇异行为来计算。此外,使用Bob Haslhofer,PI将研究有限的RICCI曲率与路径空间的分析之间的联系。 PI将在具有两个方面的RICCI曲率边界的空间上证明Martingales的差异性Harnack估计值。解决这些问题的每个问题的解决方案涉及新技术和思想的发展,这本身就期望比问题更有趣。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估审查标准来通过评估来支持的。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Boundary regularity and stability for spaces with Ricci bounded below
- DOI:10.1007/s00222-021-01092-8
- 发表时间:2020-11
- 期刊:
- 影响因子:3.1
- 作者:Elia Brué;A. Naber;Daniele Semola
- 通讯作者:Elia Brué;A. Naber;Daniele Semola
Differential Harnack inequalities on path space
路径空间上的微分 Harnack 不等式
- DOI:10.1016/j.aim.2022.108714
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Haslhofer, Robert;Kopfer, Eva;Naber, Aaron
- 通讯作者:Naber, Aaron
Conjectures and Open Questions on the Structure and Regularity of Spaces with Lower Ricci Curvature Bounds
- DOI:10.3842/sigma.2020.104
- 发表时间:2020-10
- 期刊:
- 影响因子:0.9
- 作者:A. Naber
- 通讯作者:A. Naber
Quantitative Estimates on the Singular Sets of Alexandrov Spaces
- DOI:10.1007/s42543-020-00026-2
- 发表时间:2019-12
- 期刊:
- 影响因子:0
- 作者:Nan Li;A. Naber
- 通讯作者:Nan Li;A. Naber
Effective Reifenberg theorems in Hilbert and Banach spaces
希尔伯特和巴纳赫空间中有效的赖芬伯格定理
- DOI:10.1007/s00208-018-1770-0
- 发表时间:2019
- 期刊:
- 影响因子:1.4
- 作者:Edelen, Nick;Naber, Aaron;Valtorta, Daniele
- 通讯作者:Valtorta, Daniele
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Naber其他文献
L2 curvature bounds on manifolds with bounded Ricci curvature
具有有界 Ricci 曲率的流形上的 L2 曲率界
- DOI:
10.4007/annals.2021.193.1.2 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
江文帅;Aaron Naber - 通讯作者:
Aaron Naber
Aaron Naber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Naber', 18)}}的其他基金
Ricci Curvature and Geometric Analysis
里奇曲率和几何分析
- 批准号:
1406259 - 财政年份:2014
- 资助金额:
$ 22.6万 - 项目类别:
Standard Grant
相似国自然基金
被担保企业的盈余特征与担保企业的债务契约
- 批准号:71662028
- 批准年份:2016
- 资助金额:30.0 万元
- 项目类别:地区科学基金项目
不同饱和度反式脂肪酸对动脉血管内皮细胞及平滑肌细胞功能影响的研究
- 批准号:30972482
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Adaptive optimization: parameter-free self-tuning algorithms beyond smoothness and convexity
自适应优化:超越平滑性和凸性的无参数自调整算法
- 批准号:
24K20737 - 财政年份:2024
- 资助金额:
$ 22.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Construction of machining model for ultra-smoothness of hard and brittle base materials by superfinishing
硬脆基材超光滑超精加工模型构建
- 批准号:
23K03612 - 财政年份:2023
- 资助金额:
$ 22.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ウレアプラズマに起因する子宮平滑筋収縮による早産メカニズムの解析
解脲支原体引起子宫平滑肌收缩导致早产的机制分析
- 批准号:
21K09507 - 财政年份:2021
- 资助金额:
$ 22.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relative smoothness and regularity in machine learning
机器学习中的相对平滑性和规律性
- 批准号:
570637-2021 - 财政年份:2021
- 资助金额:
$ 22.6万 - 项目类别:
University Undergraduate Student Research Awards
Study on polymer surface properties by high-temperature AFM observation of poly(methyl methacrylate) (PMMA) isolated chains deposited on a PMMA molecularly flat substrate
通过高温 AFM 观察沉积在 PMMA 分子平面基底上的聚甲基丙烯酸甲酯 (PMMA) 孤立链来研究聚合物表面性能
- 批准号:
21K18993 - 财政年份:2021
- 资助金额:
$ 22.6万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)