Collaborative Research: Theory and Methods for Highly Multivariate Spatial Processes with Applications to Climate Data Science
合作研究:高度多元空间过程的理论和方法及其在气候数据科学中的应用
基本信息
- 批准号:1811294
- 负责人:
- 金额:$ 9.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Geophysical, environmental and ecological datasets often include many variables observed over a set of irregular geographical locations. While spatial datasets are increasing in size, they are also increasing in complexity with many variables being simultaneously observed, recorded, modeled or derived. Current methods in spatial statistics are unable to cope with such highly multivariate datasets; this research addresses this gap in statistical science, aiming to establish a new framework for multivariate spatial models. The testbed for the new framework is in the field of climate data science. Understanding of the Earth system relies on coupled physical models that represent the dynamic evolution of the atmosphere, ocean, land use, rivers, glaciers and other processes. These models have led to vast amounts of climate model data that severely constrain storage resources. Moreover, statistical emulators are increasingly common and desirable alternatives to running complex physical models directly. Development and validation of compression and emulation algorithms require understanding and maintaining complex dependencies between physical variables, but current tools are univariate or pairwise-based. This research will provide statistical guidance for climate data science applications.This project focuses on a modeling framework for multivariate spatial processes, and relies on new theory incorporating graphical models in multiscale multivariate spatial process representations. Moreover, many multivariate datasets exhibit non-Gaussian behavior. A companion thrust of this work is in introducing and exploring empirical likelihood techniques for large multivariate spatial processes. Finally, the proposed models and estimation frameworks will be applied to a climate dataset from the Community Atmosphere Model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球物理、环境和生态数据集通常包括在一组不规则地理位置上观测到的许多变量。虽然空间数据集的规模不断增加,但它们的复杂性也在增加,同时观察,记录,建模或导出许多变量。目前的空间统计方法无法科普这样的高度多元数据集,本研究解决了统计科学中的这一空白,旨在建立一个新的框架,多元空间模型。新框架的试验平台是气候数据科学领域。对地球系统的了解依赖于反映大气、海洋、土地利用、河流、冰川和其他过程动态演变的耦合物理模型。这些模型产生了大量的气候模型数据,严重限制了存储资源。此外,统计仿真器越来越普遍,并直接运行复杂的物理模型的理想替代品。压缩和仿真算法的开发和验证需要理解和维护物理变量之间的复杂依赖关系,但目前的工具是基于单变量或成对的。该研究将为气候数据科学应用提供统计指导。该项目侧重于多变量空间过程的建模框架,并依赖于将图形模型纳入多尺度多变量空间过程表示的新理论。 此外,许多多变量数据集表现出非高斯行为。 这项工作的同伴推力是在介绍和探索经验似然技术的大型多元空间过程。 最后,建议的模型和估算框架将应用于社区大气模型的气候数据集。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spatial-temporal multivariate semi-Bayesian hierarchical framework for extreme precipitation frequency analysis
- DOI:10.1016/j.jhydrol.2021.126499
- 发表时间:2021-05
- 期刊:
- 影响因子:6.4
- 作者:Á. Ossandón;B. Rajagopalan;W. Kleiber
- 通讯作者:Á. Ossandón;B. Rajagopalan;W. Kleiber
Nonstationary Modeling With Sparsity for Spatial Data via the Basis Graphical Lasso
通过基本图形套索对空间数据进行稀疏性非平稳建模
- DOI:10.1080/10618600.2020.1811103
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Krock, Mitchell;Kleiber, William;Becker, Stephen
- 通讯作者:Becker, Stephen
Modeling spatial data using local likelihood estimation and a Matérn to spatial autoregressive translation
使用局部似然估计和空间自回归转换对空间数据进行建模
- DOI:10.1002/env.2652
- 发表时间:2020
- 期刊:
- 影响因子:1.7
- 作者:Wiens, Ashton;Nychka, Douglas;Kleiber, William
- 通讯作者:Kleiber, William
Nearest neighbor time series bootstrap for generating influent water quality scenarios
- DOI:10.1007/s00477-019-01762-3
- 发表时间:2020-01
- 期刊:
- 影响因子:4.2
- 作者:W. Raseman;B. Rajagopalan;J. Kasprzyk;W. Kleiber
- 通讯作者:W. Raseman;B. Rajagopalan;J. Kasprzyk;W. Kleiber
Surface Estimation for Multiple Misaligned Point Sets
多个未对齐点集的表面估计
- DOI:10.1007/s11004-019-09802-y
- 发表时间:2019
- 期刊:
- 影响因子:2.6
- 作者:Wiens, Ashton;Kleiber, William;Barnhart, Katherine R.;Sain, Dylan
- 通讯作者:Sain, Dylan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Kleiber其他文献
Random elastic space–time (REST) prediction
随机弹性时空(REST)预测
- DOI:
10.1016/j.spasta.2025.100904 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:2.500
- 作者:
Nicolas Coloma;William Kleiber - 通讯作者:
William Kleiber
Spatial impacts of technological innovations on the levelized cost of energy for offshore wind power plants in the United States
- DOI:
10.1016/j.seta.2021.101059 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:
- 作者:
Matt Shields;Philipp Beiter;William Kleiber - 通讯作者:
William Kleiber
Spatial statistics: Climate and the environment
空间统计学:气候与环境
- DOI:
10.1016/j.spasta.2024.100856 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:2.500
- 作者:
Christopher K. Wikle;Mevin B. Hooten;William Kleiber;Douglas W. Nychka - 通讯作者:
Douglas W. Nychka
William Kleiber的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Kleiber', 18)}}的其他基金
Non-Gaussian Multivariate Processes for Renewable Energy and Finance
可再生能源和金融的非高斯多元过程
- 批准号:
2310487 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
AMPS: Deep Stochastic Models for Space-Time Weather-Driven Grid Simulations
AMPS:用于时空天气驱动网格模拟的深度随机模型
- 批准号:
1923062 - 财政年份:2019
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Conference on Stochastic Weather Generators
随机天气发生器会议
- 批准号:
1822820 - 财政年份:2018
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Statistical Validation and Uncertainty Quantification for Large Spatio-Temporal Datasets
合作研究:大型时空数据集的可扩展统计验证和不确定性量化
- 批准号:
1417724 - 财政年份:2014
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Collaborative Research: Theory and Methods for Massive Nonstationary and Multivariate Spatial Processes
合作研究:大规模非平稳和多元空间过程的理论与方法
- 批准号:
1406536 - 财政年份:2014
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334039 - 财政年份:2024
- 资助金额:
$ 9.27万 - 项目类别:
Continuing Grant
Collaborative Research: Design and synthesis of hybrid anode materials made of chemically bonded carbon nanotube to copper: a concerted experiment/theory approach
合作研究:设计和合成由化学键合碳纳米管和铜制成的混合阳极材料:协调一致的实验/理论方法
- 批准号:
2334040 - 财政年份:2024
- 资助金额:
$ 9.27万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327010 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: New Directions and Approaches in Discrepancy Theory
合作研究:AF:小:差异理论的新方向和方法
- 批准号:
2327011 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
- 批准号:
2311058 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: Theory for Learning Lossless and Lossy Coding
协作研究:CIF:小型:学习无损和有损编码的理论
- 批准号:
2324396 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
- 批准号:
2240982 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Collaborative Research: Using Complex Systems Theory and Methods to Gauge the Gains and Persisting Challenges of Broadening Participation Initiatives
合作研究:利用复杂系统理论和方法来衡量扩大参与计划的收益和持续的挑战
- 批准号:
2301197 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Collaborative Research: Floer Theory and Topological Entropy
合作研究:弗洛尔理论和拓扑熵
- 批准号:
2304207 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant
Collaborative Research: Supramolecular Multi-Component Peptide Nanofibrils: Bridging Understanding at Atomic and Mesoscopic Scales with Structure and Theory
合作研究:超分子多组分肽纳米纤维:通过结构和理论在原子和介观尺度上架起理解桥梁
- 批准号:
2304852 - 财政年份:2023
- 资助金额:
$ 9.27万 - 项目类别:
Standard Grant