Spin, Charge, and Energy Transport in Semiconductor Nanostructures and Graphene-Like Materials

半导体纳米结构和类石墨烯材料中的自旋、电荷和能量传输

基本信息

  • 批准号:
    1406568
  • 负责人:
  • 金额:
    $ 33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARYRecent advances in experimental techniques have opened the way to unprecedentedly accurate studies of charge and spin dynamics in two-dimensional electronic systems, which are formed at the interface between semiconductors, metals, and metal oxides, and in various layered materials. The ability of these materials to transport spin, charge and energy in an efficient and controllable manner makes them promising candidates for the development of new technologies, both in the field of information processing and in that of energy conversion. This project combines theoretical research and accompanying educational and outreach activities that address key issues relating to charge, spin, and energy transport in single- and multi-layered electronic systems. Particular systems which will be investigated include materials such a single-atom-thick form of carbon, known as graphene, and other graphene-like two-dimensional materials composed of transition metal atoms and sulfur. Through careful analytical and computational studies, the PI will examine the interplay between the spin and charge degrees of freedom in these systems, and predict how external fields (e.g. electric, thermal) can be manipulated to bring out novel phenomena that could lead to technological innovations.This project is strategically positioned at the interface between fundamental condensed matter theory, applied physics, and computational materials science, and has potential technological implications in electronics and thermal energy transport. While carrying out this research with the assistance of postdoctoral researchers and external collaborators, the PI will maintain a weekly seminar on "Selected topics in condensed matter theory", in which the graduate students of the Physics Department at the University of Missouri will be introduced to the basic concepts and methods which underlie the execution of the project. The broader significance of the research will be explained to a wider audience through public lectures delivered by the PI.TECHNICAL SUMMARYRecent advances in experimental techniques such as transient grating spectroscopy, magnetopolarimetry, spin noise spectroscopy, and nonlinear optical generation of spin currents open the way to unprecedentedly accurate studies of charge and spin dynamics in two-dimensional electron liquids, which exist at the interfaces between semiconductors, metals, and metal oxides, and in layered materials such as graphene, MoS2, and the surface of topological insulators. The ability of these systems to transport spin, charge and energy in an efficient and controllable manner makes them promising candidates for the development of new technologies, both in the field of information processing and that of energy conversion. This project combines theoretical research and accompanying educational and outreach activities addressing key issues relating to charge, spin, and energy transport in single- and multi-layered electronic systems. At the core of the projected activity lies a set of basic physics problems which will be addressed in parallel or sequentially during a period of three years. These are:1. Evaluating the microscopic spin-charge response functions for two-dimensional electron liquids in graphene and graphene-like materials, including electron-electron interactions, disorder, spin-orbit couplings, and magnetic fields in suitable approximations;2. Developing the theory of spin diffusion, thermal conductivity, and viscosity in graphene and graphene-like materials, to the point where the calculations exhibit the crossover between the collisionless (high-frequency) and collision-dominated (hydrodynamic) regimes;3. Identifying and quantifying novel thermoelectric phenomena for interacting electrons in multi-layer structures;4. Developing the theory of spin Hall effect and spin-galvanic effects at metallic and oxide interfaces with strong spin-orbit interactions.This project is strategically positioned at the interface between fundamental condensed matter theory, applied physics, and computational materials science, and has potential technological implications in electronics and thermal energy transport. While carrying out this research with the assistance of postdoctoral researchers and external collaborators, the PI will maintain a weekly seminar on "Selected topics in condensed matter theory", in which the graduate students of the Physics Department at the University of Missouri will be introduced to the basic concepts and methods which underlie the execution of the project. The broader significance of the research will be explained to a wider audience through public lectures delivered by the PI.
最近实验技术的进步为在二维电子系统中对电荷和自旋动力学进行前所未有的精确研究开辟了道路。二维电子系统形成于半导体、金属、金属氧化物和各种层状材料之间的界面。这些材料以有效和可控的方式传输自旋、电荷和能量的能力,使它们成为信息处理和能量转换领域发展新技术的有希望的候选者。该项目结合了理论研究和伴随的教育和推广活动,解决与单层和多层电子系统中的电荷、自旋和能量输运有关的关键问题。将被研究的特殊系统包括单原子厚度形式的碳,称为石墨烯,以及其他由过渡金属原子和硫组成的石墨烯类二维材料。通过仔细的分析和计算研究,PI将检查这些系统中自旋自由度和电荷自由度之间的相互作用,并预测如何操纵外部场(例如电,热)以产生可能导致技术创新的新现象。该项目战略性地定位于基础凝聚态理论、应用物理和计算材料科学的交叉点,在电子学和热能传输方面具有潜在的技术意义。在博士后研究人员和外部合作者的帮助下开展这项研究的同时,PI将每周举办一次关于“凝聚态理论选题”的研讨会,向密苏里大学物理系的研究生介绍项目执行的基本概念和方法。该研究的广泛意义将通过PI的公开讲座向更广泛的受众解释。技术综述:实验技术的最新进展,如瞬态光栅光谱、磁极化法、自旋噪声光谱和自旋电流的非线性光学产生,为前所未有地精确研究二维电子液体中的电荷和自旋动力学开辟了道路,这些电子液体存在于半导体、金属和金属氧化物之间的界面,以及石墨烯、MoS2等层状材料和拓扑绝缘体表面。这些系统以有效和可控的方式传输自旋、电荷和能量的能力使它们成为发展新技术的有希望的候选者,无论是在信息处理领域还是在能量转换领域。该项目结合理论研究和伴随的教育和推广活动,解决与单层和多层电子系统中的电荷、自旋和能量输运有关的关键问题。预计活动的核心是一组基本物理问题,这些问题将在三年的时间内并行或依次解决。这些都是:1。评估石墨烯和类石墨烯材料中二维电子液体的微观自旋-电荷响应函数,包括电子-电子相互作用、无序、自旋-轨道耦合和适当近似下的磁场;2 .发展石墨烯和类石墨烯材料的自旋扩散、导热性和粘度理论,使计算显示出无碰撞(高频)和碰撞主导(流体动力学)制度之间的交叉;3 .识别和量化多层结构中电子相互作用的新型热电现象;发展了具有强自旋轨道相互作用的金属和氧化物界面上的自旋霍尔效应和自旋电效应理论。该项目战略性地定位于基础凝聚态理论、应用物理和计算材料科学的交叉点,在电子学和热能传输方面具有潜在的技术意义。在博士后研究人员和外部合作者的帮助下开展这项研究的同时,PI将每周举办一次关于“凝聚态理论选题”的研讨会,向密苏里大学物理系的研究生介绍项目执行的基本概念和方法。该研究的广泛意义将通过PI的公开讲座向更广泛的受众解释。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Giovanni Vignale其他文献

Spin transport in a unitary Fermi gas close to the BCS transition
接近 BCS 跃迁的酉费米气体中的自旋输运
  • DOI:
    10.1103/physreva.86.063631
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    M. Mink;V. Jacobs;H. Stoof;R. Duine;M. Polini;Giovanni Vignale
  • 通讯作者:
    Giovanni Vignale
Temperature-dependent theory of tunneling in the fractional quantum Hall effect
  • DOI:
    10.1016/j.physe.2006.03.033
  • 发表时间:
    2006-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Roberto D’Agosta;Giovanni Vignale;Roberto Raimondi
  • 通讯作者:
    Roberto Raimondi
Realization of a two-dimensional Weyl semimetal and topological Fermi strings
二维外尔半金属和拓扑费米弦的实现
  • DOI:
    10.1038/s41467-024-50329-6
  • 发表时间:
    2024-07-17
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Qiangsheng Lu;P. V. Sreenivasa Reddy;Hoyeon Jeon;Alessandro R. Mazza;Matthew Brahlek;Weikang Wu;Shengyuan A. Yang;Jacob Cook;Clayton Conner;Xiaoqian Zhang;Amarnath Chakraborty;Yueh-Ting Yao;Hung-Ju Tien;Chun-Han Tseng;Po-Yuan Yang;Shang-Wei Lien;Hsin Lin;Tai-Chang Chiang;Giovanni Vignale;An-Ping Li;Tay-Rong Chang;Rob G. Moore;Guang Bian
  • 通讯作者:
    Guang Bian
Observability of cyclotron resonance in the hydrodynamic regime of bilayer graphene
双层石墨烯流体动力学状态下回旋共振的可观测性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Cruise;Alexander Seidel;Erik Henriksen;Giovanni Vignale
  • 通讯作者:
    Giovanni Vignale
Spin Coulomb Drag
自旋库仑阻力

Giovanni Vignale的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Giovanni Vignale', 18)}}的其他基金

Many-body theory of spin-orbit coupled materials and novel spin drag effects
自旋轨道耦合材料的多体理论和新颖的自旋阻力效应
  • 批准号:
    1104788
  • 财政年份:
    2011
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Many-Body Theory of Electronic Dynamics and Transport
电子动力学与传输多体理论
  • 批准号:
    0705460
  • 财政年份:
    2007
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Many-Body Effects in Electronic Dynamics and Transport
电子动力学和传输中的多体效应
  • 批准号:
    0313681
  • 财政年份:
    2003
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Theory of Charge and Spin Dynamics in Electron Liquids
电子液体中的电荷和自旋动力学理论
  • 批准号:
    0074959
  • 财政年份:
    2000
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Theory of Time-Dependent Phenomena in Quantum Many-Body Systems
量子多体系统中的瞬态现象理论
  • 批准号:
    9706788
  • 财政年份:
    1997
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
U.S.-Australia Joint Workshop on Electron Density FunctionalTheory: Recent Progress and New Directions/Brisbane, Australia/July 1996
美国-澳大利亚电子密度泛函理论联合研讨会:最新进展和新方向/澳大利亚布里斯班/1996 年 7 月
  • 批准号:
    9515457
  • 财政年份:
    1996
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Current-density Functional Theory of Artificial Microstructures in a Magnetic Field
磁场中人造微结构的电流密度泛函理论
  • 批准号:
    9403908
  • 财政年份:
    1994
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant
Current-Density Functional Theory of Electron Diamagnetism in Periodic Structures
周期性结构中电子抗磁性的电流密度泛函理论
  • 批准号:
    9100988
  • 财政年份:
    1991
  • 资助金额:
    $ 33万
  • 项目类别:
    Continuing Grant

相似国自然基金

CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
Sema3E在CHARGE综合症中的作用及机制研究
  • 批准号:
    81160144
  • 批准年份:
    2011
  • 资助金额:
    52.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

NSF-BSF: Ultrafast Laser-Electron Heating for Tailoring the Emittance and Charge of High-Energy Proton Beams
NSF-BSF:超快激光电子加热用于调整高能质子束的发射率和电荷
  • 批准号:
    2308860
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Charge and Energy Transfer Processes at Inorganic-Organic Interfaces
无机-有机界面的电荷和能量转移过程
  • 批准号:
    DE230100382
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Discovery Early Career Researcher Award
Improvement of efficiency of light-energy conversion devices by introducing metal complexes and charge transport layers
通过引入金属配合物和电荷传输层提高光能转换器件的效率
  • 批准号:
    23K04908
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAS: Harvesting Electrons From Lower Energy Excited States to Extend Spectral Coverage and Facilitate Multiple Charge Collection Following Singlet Fission on Metal Oxides
CAS:从较低能量激发态收集电子以扩展光谱覆盖范围并促进金属氧化物上单线态裂变后的多重电荷收集
  • 批准号:
    2247164
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Uncovering Energy and Charge Transport Mechanisms in Organic-Inorganic Hybrid Perovskite Quantum Wells with Nonlinear Action Spectroscopies
利用非线性作用光谱揭示有机-无机杂化钙钛矿量子阱中的能量和电荷传输机制
  • 批准号:
    2154791
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Charge and energy transport in disordered functional materials
无序功能材料中的电荷和能量传输
  • 批准号:
    DP220103584
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Discovery Projects
Charge-Free Electrostatic MEMS Vibration Energy Harvester for Sensor/LSI Integration
用于传感器/LSI 集成的无电荷静电 MEMS 振动能量收集器
  • 批准号:
    22H01929
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EAGER: CRYO: Engineering Charge and Energy Transfer in Superconducting Tunnel Junctions to Achieve Solid-State Refrigeration to Sub-Kelvin Temperatures
EAGER:CRYO:超导隧道结中的工程电荷和能量转移以实现亚开尔文温度的固态制冷
  • 批准号:
    2232201
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Photo-induced charge and energy transport: from single molecules to disordered materials
光诱导电荷和能量传输:从单分子到无序材料
  • 批准号:
    RGPIN-2017-05119
  • 财政年份:
    2022
  • 资助金额:
    $ 33万
  • 项目类别:
    Discovery Grants Program - Individual
Sensitizing low-energy light with organic charge-transfer complexes bearing modifiable states of matter: towards liquefied metal-free TTA-UC system
用具有可改变物质状态的有机电荷转移复合物敏化低能光:走向液化无金属TTA-UC系统
  • 批准号:
    21K05244
  • 财政年份:
    2021
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了