Nanoscale Electric Fields in Self-Assembled Optoelectronic Biomaterials

自组装光电生物材料中的纳米级电场

基本信息

  • 批准号:
    1407493
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-15 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

Non-technical: This award by the Biomaterials program in the Division of Materials Research, and co-funded by the Nano-Biosensors Program in the Division of Chemical, Bioengineering, Environmental and Transport Systems (ENG/CBET) to the Johns Hopkins University, is to study electroactive biomaterials that are relevant to regenerating nerves, cardiac tissue and skeletal muscle, all known to respond to external electrical impulses. New electroactive biomaterials that are capable of acting both as field carriers and as better cell migration matrices will be poised to impact many emerging tissue engineering and bioenergy applications. Before these impacts can be realized, it will be critical to quantitatively characterize the magnitude of electric fields present in these constructs and the specific impacts on cell biology. These investigations span several areas of contemporary materials science thus requiring a cooperative scientific effort among chemistry and engineering. The approach described here builds on a new material platform developed at Johns Hopkins whereby small organic molecules are combined with electronic and biological functions. The molecules thus created can self-associate under biological conditions to yield nanoscopic fibrils that resemble the structural elements of the extracellular matrix. The present project seeks to understand how the electronic properties of these nanoscale materials will impact cell behavior and to use this knowledge to engineer specific cellular outcomes directed by optoelectronic inputs. This research will expose students to the state of the art in biomaterial design and characterization techniques used for optoelectronic and in vitro studies.Technical: This award to Johns Hopkins University will support an innovative program in optoelctronic biomaterials that combines organic-based electronic function and cell-growth-promoting oligopeptides. It involves a systematic study of the synthesis of peptide nanomaterials, the assessment of their electrical and photonic properties under aqueous and biotic environments, and the assessment of their cellular influence in vitro. The key hypothesis is that nanoscale electric fields engineered into peptide-based hydrogel scaffolds will have direct spatial and temporal influence on cell adhesion and growth. New electroactive biomaterials that are capable of acting both as field carriers and as better cell migration matrices will be poised to impact many emerging tissue engineering and bioenergy applications. Before these impacts can be realized, it will be critical to quantitatively characterize the magnitude of electric fields present in these constructs and the specific impacts on both material properties and cell biology.
非技术性: 该奖项由材料研究部的生物材料计划授予,并由约翰霍普金斯大学化学,生物工程,环境和运输系统部(ENG/CBET)的纳米生物传感器计划共同资助,旨在研究与再生神经,心脏组织和骨骼肌相关的电活性生物材料,所有已知的都对外部电脉冲做出反应。新的电活性生物材料,能够作为场载体和更好的细胞迁移基质,将有望影响许多新兴的组织工程和生物能源应用。在实现这些影响之前,定量表征这些结构中存在的电场大小以及对细胞生物学的具体影响至关重要。 这些调查跨越当代材料科学的几个领域,因此需要化学和工程之间的合作科学努力。 这里描述的方法建立在约翰霍普金斯开发的新材料平台上,其中小有机分子与电子和生物功能相结合。 由此产生的分子可以在生物条件下自缔合以产生类似于细胞外基质的结构元件的纳米级原纤维。 本项目旨在了解这些纳米材料的电子特性如何影响细胞行为,并利用这些知识来设计由光电输入指导的特定细胞结果。 这项研究将使学生了解用于光电和体外研究的生物材料设计和表征技术的最新水平。技术:约翰霍普金斯大学的这项研究将支持光电生物材料的创新计划,该计划将有机电子功能和促进细胞生长的寡肽相结合。 它涉及肽纳米材料合成的系统研究,在水和生物环境下评估其电学和光子特性,以及评估其体外细胞影响。关键的假设是,纳米级电场工程肽为基础的水凝胶支架将有直接的空间和时间的影响细胞的粘附和生长。新的电活性生物材料,能够作为场载体和更好的细胞迁移基质,将有望影响许多新兴的组织工程和生物能源应用。在实现这些影响之前,定量表征这些结构中存在的电场强度以及对材料特性和细胞生物学的具体影响至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Tovar其他文献

John Tovar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Tovar', 18)}}的其他基金

Pendant Photochromic Switches Enabling Fluxional Macromolecular Pi-Electronics
悬吊式光致变色开关实现通量高分子 Pi 电子学
  • 批准号:
    2305009
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Pendant Photochromic Switches Enabling Fluxional Macromolecular Pi-Electronics
悬吊式光致变色开关实现通量高分子 Pi 电子学
  • 批准号:
    2002922
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
DMREF: Collaborative Research: Self-assembled peptide-pi-electron supramolecular polymers for bioinspired energy harvesting, transport and management
DMREF:合作研究:用于仿生能量收集、运输和管理的自组装肽-π-电子超分子聚合物
  • 批准号:
    1728947
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Fluxional macromolecular pi-electronics via rational manipulation of aromaticity and spin
通过芳香性和自旋的合理操纵实现流态高分子π电子学
  • 批准号:
    1607821
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Encouraging pi-electron delocalization through boron-based heteroaromatic subunits
通过硼基杂芳族亚基促进π电子离域
  • 批准号:
    1464798
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Locally unusual and tunable aromatic rings for pi-conjugated polymers
π共轭聚合物的局部不寻常且可调的芳环
  • 批准号:
    1207259
  • 财政年份:
    2012
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CAREER: Regulating Charge Transport through Pi-Conjugated Electronic Materials
职业:通过 Pi 共轭电子材料调节电荷传输
  • 批准号:
    0644727
  • 财政年份:
    2007
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant

相似国自然基金

Probing matter-antimatter asymmetry with the muon electric dipole moment
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    30 万元
  • 项目类别:

相似海外基金

CAREER: Alternating Current Electrophoresis in Spatially Non-Uniform Electric Fields
职业:空间不均匀电场中的交流电泳
  • 批准号:
    2340925
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Interference effects caused by multiple scattering of the near-infrared electric fields in super-concentrated solutions
超浓溶液中近红外电场多次散射引起的干扰效应
  • 批准号:
    22KK0243
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Collaborative Research: Elucidating the Roles of Electric Fields Within Mixed Ionic and Electronic Conducting Oxides Under Electrochemical Reducing Conditions
合作研究:阐明电化学还原条件下混合离子和电子导电氧化物中电场的作用
  • 批准号:
    2333166
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
EAGER: Increased Service Life of Sustainable Cements via Electric Fields
EAGER:通过电场延长可持续水泥的使用寿命
  • 批准号:
    2243059
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Simultaneous and Independent Control of Nanostructured Objects Through the Use of Coupled External Electric Fields
职业:通过使用耦合外部电场同时独立控制纳米结构物体
  • 批准号:
    2146056
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
PFI-TT: Point-of-Care Sensor Based on Electric Fields and Machine Learning for the Detection of Circulating MicroRNA to Identify Early Stage Pancreatic Cancer
PFI-TT:基于电场和机器学习的即时护理传感器,用于检测循环 MicroRNA 以识别早期胰腺癌
  • 批准号:
    2300064
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
How electric fields can facilitate reversible protein binding to surfaces
电场如何促进可逆蛋白质与表面的结合
  • 批准号:
    DP220103024
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Projects
Targeted Neuromodulation by Nanosecond Pulsed Electric Fields
纳秒脉冲电场的靶向神经调节
  • 批准号:
    10669767
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
Tumour Treating Electric Fields for Non-invasive Treatment of Brain Cancer
肿瘤治疗电场用于无创治疗脑癌
  • 批准号:
    2641362
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Studentship
PFI-TT: Point-of-Care Sensor Based on Electric Fields and Machine Learning for the Detection of Circulating MicroRNA to Identify Early Stage Pancreatic Cancer
PFI-TT:基于电场和机器学习的即时护理传感器,用于检测循环 MicroRNA 以识别早期胰腺癌
  • 批准号:
    2213760
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了