DMREF: Collaborative Research: Self-assembled peptide-pi-electron supramolecular polymers for bioinspired energy harvesting, transport and management
DMREF:合作研究:用于仿生能量收集、运输和管理的自组装肽-π-电子超分子聚合物
基本信息
- 批准号:1728947
- 负责人:
- 金额:$ 106.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical Description: Nature exquisitely controls the spatial arrangement of key pigments and dyes in the process of photosynthesis to harness solar energy. Mimicry of controlled dye arrangements in synthetic materials can be realized through tailored design of molecules and molecular arrangements. However, exerting reliable control over the assembly of engineered molecular materials in the crucial 10-100 nanometer "mesoscale" regime, thousands of times smaller than a millimeter, remains elusive. Such mesoscale molecular structures will combine charge and energy transfer activities with capabilities for assembly in biological solutions, and compatibility with biological environments. Given the multitude of molecular design possibilities, it is essential that experimental programs incorporate computer modeling and data-driven screening to guide experimental design and synthesis. Tight integration and mutually reinforcing feedback between computation and experiment can reveal fundamental design rules for molecular assembly, and accelerate the discovery and development of multi-molecule assemblies with tailored structure and function. This project will develop these functional molecular superstructures in a collaboration encompassing molecular synthesis, self-assembly analogous to biological systems, modeling of the structures and electrical properties of the assemblies, and utilizing the assemblies to manage interactions between light and electricity. The PIs are committed to workforce training and development within this project, guiding the next generation of materials and data scientists of diverse socio-economic background in state-of-the-art tools and exposing them to an integrated interdisciplinary mode of work that will define future research. Technical Description: The photophysical and electrical properties of pi-conjugated supramolecular systems depend critically on the explicit nature of the intermolecular electronic interactions. These interactions are governed by the precise molecular structure and chemistry and emergent supramolecular arrangements. The PIs developed a peptide construct that offer a pathway to exert such control over emergent supramolecular structure through tailoring of steric bulk and variable hydrophobicity of the component sequences to influence intermolecular orientations, higher-order fibrilization, and specific electronic outcomes. They initially used an Edisonian approach to uncover these variations, but the goals of this project are to wield explicit engineered control through tightly integrated atomistic simulations and electronic structure calculations. The research activities build upon the team's strong foundation to accomplish these goals in two specific objectives: (i) the development of sophisticated peptidic semiconductor materials with advanced optoelectronic functionality and (ii) the development of new assembly paradigms leading to heterogeneous peptidic nanomaterials with chemical and electronic gradients and localized electric fields. The execution of this work will entail interconnected efforts by the research team in the (i) synthesis of new pi-electron units and new self-assembling peptides, (ii) molecular and data-driven modeling of the nanomaterial aggregates and their higher-order assemblies, and (iii) characterization of electrical transport within the nanomaterials. This project will make special provision for research opportunities for undergraduate students, women, and underrepresented minorities. The PIs will train and mentor researchers in state-of-the-art experimental and computational tools and expose them to an integrated interdisciplinary mode of work. K-12 outreach activities will inspire excitement and awareness of materials science and encourage students to pursue higher education in science, technology, engineering, and math (STEM) fields.
非技术描述:大自然巧妙地控制了光合作用过程中关键色素和染料的空间排列,以利用太阳能。 合成材料中受控染料排列的模仿可以通过分子和分子排列的定制设计来实现。然而,在关键的10-100纳米“中尺度”范围内对工程分子材料的组装施加可靠的控制,比一毫米小数千倍,仍然是难以捉摸的。这种中尺度分子结构将联合收割机电荷和能量转移活性与在生物溶液中组装的能力以及与生物环境的相容性相结合。考虑到分子设计的多种可能性,实验程序必须结合计算机建模和数据驱动筛选来指导实验设计和合成。计算与实验之间的紧密结合和相互加强的反馈可以揭示分子组装的基本设计规则,并加速具有定制结构和功能的多分子组装体的发现和发展。该项目将开发这些功能性分子超结构的合作,包括分子合成,类似于生物系统的自组装,组装体的结构和电特性的建模,以及利用组装体来管理光和电之间的相互作用。PI致力于该项目中的劳动力培训和发展,指导具有不同社会经济背景的下一代材料和数据科学家使用最先进的工具,并使他们接触到将定义未来研究的综合跨学科工作模式。技术说明:π共轭超分子体系的物理和电学性质依赖于分子间电子相互作用的显式性质。这些相互作用是由精确的分子结构和化学和新兴的超分子排列。PI开发了一种肽构建体,该肽构建体提供了一种途径,通过调整组分序列的空间体积和可变疏水性来影响分子间取向、高阶原纤化和特定的电子结果,从而对出现的超分子结构施加这种控制。他们最初使用爱迪生的方法来揭示这些变化,但该项目的目标是通过紧密集成的原子模拟和电子结构计算来进行明确的工程控制。研究活动建立在团队强大的基础上,以实现两个具体目标:(i)开发具有先进光电功能的复杂肽半导体材料,以及(ii)开发新的组装范例,从而产生具有化学和电子梯度以及局部电场的异质肽纳米材料。 这项工作的执行将需要研究团队在以下方面的相互关联的努力:(i)合成新的π电子单元和新的自组装肽,(ii)纳米材料聚集体及其高阶组装体的分子和数据驱动建模,以及(iii)表征纳米材料内的电传输。该项目将特别为本科生、妇女和代表性不足的少数民族提供研究机会。PI将培训和指导研究人员使用最先进的实验和计算工具,并使他们接触到综合的跨学科工作模式。K-12外展活动将激发材料科学的兴奋和意识,并鼓励学生在科学,技术,工程和数学(STEM)领域接受高等教育。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Carboxylic Acid‐Functionalized Conjugated Polymer Promoting Diminished Electronic Drift and Amplified Proton Sensitivity of Remote Gates Compared to Nonpolar Surfaces in Aqueous Media
与水介质中的非极性表面相比,羧酸-功能化共轭聚合物可减少电子漂移并增强远程门的质子灵敏度
- DOI:10.1002/aelm.201901073
- 发表时间:2020
- 期刊:
- 影响因子:6.2
- 作者:Jang, Hyun‐June;Wagner, Justine;Song, Yunjia;Lee, Taein;Katz, Howard E.
- 通讯作者:Katz, Howard E.
Discovery of Self-Assembling π-Conjugated Peptides by Active Learning-Directed Coarse-Grained Molecular Simulation
- DOI:10.1021/acs.jpcb.0c00708
- 发表时间:2020-05-14
- 期刊:
- 影响因子:3.3
- 作者:Shmilovich, Kirill;Mansbach, Rachael A.;Ferguson, Andrew L.
- 通讯作者:Ferguson, Andrew L.
Photon management in supramolecular peptide nanomaterials
超分子肽纳米材料中的光子管理
- DOI:10.1088/1748-3190/aa9685
- 发表时间:2018
- 期刊:
- 影响因子:3.4
- 作者:Tovar, John D
- 通讯作者:Tovar, John D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Tovar其他文献
John Tovar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Tovar', 18)}}的其他基金
Pendant Photochromic Switches Enabling Fluxional Macromolecular Pi-Electronics
悬吊式光致变色开关实现通量高分子 Pi 电子学
- 批准号:
2305009 - 财政年份:2023
- 资助金额:
$ 106.32万 - 项目类别:
Standard Grant
Pendant Photochromic Switches Enabling Fluxional Macromolecular Pi-Electronics
悬吊式光致变色开关实现通量高分子 Pi 电子学
- 批准号:
2002922 - 财政年份:2020
- 资助金额:
$ 106.32万 - 项目类别:
Standard Grant
Fluxional macromolecular pi-electronics via rational manipulation of aromaticity and spin
通过芳香性和自旋的合理操纵实现流态高分子π电子学
- 批准号:
1607821 - 财政年份:2016
- 资助金额:
$ 106.32万 - 项目类别:
Standard Grant
Encouraging pi-electron delocalization through boron-based heteroaromatic subunits
通过硼基杂芳族亚基促进π电子离域
- 批准号:
1464798 - 财政年份:2015
- 资助金额:
$ 106.32万 - 项目类别:
Standard Grant
Nanoscale Electric Fields in Self-Assembled Optoelectronic Biomaterials
自组装光电生物材料中的纳米级电场
- 批准号:
1407493 - 财政年份:2014
- 资助金额:
$ 106.32万 - 项目类别:
Standard Grant
Locally unusual and tunable aromatic rings for pi-conjugated polymers
π共轭聚合物的局部不寻常且可调的芳环
- 批准号:
1207259 - 财政年份:2012
- 资助金额:
$ 106.32万 - 项目类别:
Continuing Grant
CAREER: Regulating Charge Transport through Pi-Conjugated Electronic Materials
职业:通过 Pi 共轭电子材料调节电荷传输
- 批准号:
0644727 - 财政年份:2007
- 资助金额:
$ 106.32万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 106.32万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 106.32万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 106.32万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 106.32万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 106.32万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Multi-material digital light processing of functional polymers
合作研究:DMREF:功能聚合物的多材料数字光处理
- 批准号:
2323715 - 财政年份:2023
- 资助金额:
$ 106.32万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2323667 - 财政年份:2023
- 资助金额:
$ 106.32万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: Simulation-Informed Models for Amorphous Metal Additive Manufacturing
合作研究:DMREF:非晶金属增材制造的仿真模型
- 批准号:
2323719 - 财政年份:2023
- 资助金额:
$ 106.32万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2323727 - 财政年份:2023
- 资助金额:
$ 106.32万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Data-Driven Discovery of the Processing Genome for Heterogenous Superalloy Microstructures
合作研究:DMREF:异质高温合金微结构加工基因组的数据驱动发现
- 批准号:
2323936 - 财政年份:2023
- 资助金额:
$ 106.32万 - 项目类别:
Standard Grant