Taming Entangled Photons: Programmable Control of Quantum States of Light
驯服纠缠光子:光量子态的可编程控制
基本信息
- 批准号:1407620
- 负责人:
- 金额:$ 37.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Taming Entangled Photons: Programmable Control of Quantum States of LightNowhere is the strangeness of quantum mechanics more evident than in the behavior of entangled particles; measuring the state of one particle can influence that of its entangled partner, even if the pair are distantly separated. Such weird properties belie our common-sense notions of how the world works, and yet they can potentially be channeled for tremendous benefit in real-world applications. One such possibility is quantum key distribution (QKD), which relies on the laws of quantum mechanics to offer unconditional security in the transmission of information between two remote parties. In a modern world increasingly dependent on communication security, large-scale QKD represents a major goal of current research. Motivated by this objective, we are exploring new ways to manipulate and measure entangled photons based on optical pulse shaping. In a standard pulse shaper, the different frequency components of an input field are programmably manipulated to create a user-defined optical waveform at the output. By significantly extending such pulse-shaping ideas for controlling the fields involved in entangled photon experiments, we see opportunity not only to investigate new physics, but also to expand on current capabilities for imprinting and extracting information from individual light quanta, offering new possibilities for secure high-speed communications and hopefully contributing to a safer tomorrow.Specifically, we will focus on ways to use pulse shaping of classical fields for advances in (1) detection and (2) generation of entangled photons. Typically, single-photon detection is achieved with photodiodes possessing timing resolutions much longer than the duration of the photons being measured, meaning that the fine features in the temporal degree of freedom are unobservable. Accordingly, we are working to expand on a different detection scheme in which each photon is mixed with an ultrashort femtosecond pulse; then if the photon combines with the pulse through sum-frequency generation, it is possible to determine its arrival time to within the duration of the short pulse itself, permitting resolution on the femtosecond timescale and giving access to the vast information potential of frequency-time entangled photons. Our plan is to significantly expand on previous work in this area and implement an optical-fiber-compatible system for femtosecond detection, experimenting with a variety of classical fields. We will explore the possibilities for utilizing such detection in photon state characterization, demonstration of nonlocal quantum effects, and new QKD protocols. In the second major direction of this proposal, we will consider shaping of classical fields used not for detection, but rather generation of entangled photons. The spectro-temporal properties of the pump fields which produce entangled photons through downconversion can have a profound impact on the nature of the generated quantum state and "importantly for us" can be actively updated through programmable pulse shaping. In particular, we plan to consider optical frequency combs and their potential for generating new forms of entangled states, merging comb technology for optical communications with interesting quantum applications.
驯服纠缠光子:量子光态的可编程控制量子力学的奇异性在纠缠粒子的行为中表现得最为明显;测量一个粒子的状态可以影响其纠缠伙伴的状态,即使这对粒子相距甚远。这些奇怪的特性与我们对世界如何运作的常识性概念不符,但它们可能在现实世界的应用中获得巨大的好处。其中一种可能性是量子密钥分发(QKD),它依赖于量子力学定律,在两个远程方之间的信息传输中提供无条件的安全性。在一个越来越依赖于通信安全的现代世界中,大规模QKD代表了当前研究的主要目标。基于这一目标,我们正在探索基于光脉冲整形的纠缠光子操纵和测量的新方法。在标准脉冲整形器中,输入场的不同频率分量被可编程地操纵以在输出处创建用户定义的光学波形。通过显著扩展这种脉冲整形的想法来控制纠缠光子实验中涉及的场,我们看到了不仅研究新物理学的机会,而且还扩展了当前从单个光量子中印记和提取信息的能力,为安全的高速通信提供了新的可能性,并有望为更安全的明天做出贡献。我们将集中于如何使用经典场的脉冲整形来促进(1)探测和(2)纠缠光子的产生。通常,单光子检测是通过光电二极管实现的,光电二极管的时序分辨率比被测量光子的持续时间长得多,这意味着时间自由度中的精细特征是不可观察的。因此,我们正在努力扩展一种不同的探测方案,其中每个光子与超短飞秒脉冲混合;然后,如果光子通过和频产生与脉冲结合,则可以确定其到达时间在短脉冲本身的持续时间内,从而允许在飞秒时间尺度上进行分辨率,并获得频率-时间纠缠光子的巨大信息潜力。我们的计划是显着扩大以前的工作在这一领域,并实现一个光纤兼容的飞秒检测系统,实验与各种经典领域。我们将探讨利用这种检测在光子状态表征,演示非局域量子效应,和新的量子密钥分发协议的可能性。在这个提议的第二个主要方向,我们将考虑塑造经典场,而不是用于检测,而是产生纠缠光子。通过下变频产生纠缠光子的泵浦场的光谱-时间特性可以对生成的量子态的性质产生深远的影响,并且“对我们来说重要的是”可以通过可编程脉冲整形主动更新。特别是,我们计划考虑光频梳及其产生新形式纠缠态的潜力,将光通信的梳技术与有趣的量子应用相结合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Weiner其他文献
Andrew Weiner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Weiner', 18)}}的其他基金
High-dimensional Frequency Gates in Integrated Photonics for Scalable Quantum Interconnects
用于可扩展量子互连的集成光子学中的高维频率门
- 批准号:
2034019 - 财政年份:2020
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
RAISE:TAQS: High Dimensional Frequency Bin Entanglement -- Photonic Integration and Algorithms
RAISE:TAQS:高维频率仓纠缠——光子集成和算法
- 批准号:
1839191 - 财政年份:2018
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
Guiding the Evolution of Microresonator Frequency Combs
指导微谐振器频率梳的发展
- 批准号:
1809784 - 财政年份:2018
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
Microresonator Frequency Combs as Coherent Transceiver Sources for Multi-Tb/s Optical Communications
微谐振器频率梳作为多 Tb/s 光通信的相干收发器源
- 批准号:
1509578 - 财政年份:2015
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
MRI: Acquisition of Self-Referenced Frequency Comb for Atomic-Molecular-Optical Physics and Optical Signal Processing Research
MRI:获取自参考频率梳用于原子分子光学物理和光信号处理研究
- 批准号:
1126314 - 财政年份:2011
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
High Repetition Rate Photonic Frequency Combs and Applications
高重复率光子频率梳及其应用
- 批准号:
1102110 - 财政年份:2011
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
Innovative Silicon Photonics for Polarization Sensing and Control
用于偏振传感和控制的创新硅光子学
- 批准号:
0925759 - 财政年份:2009
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
Novel Hybrid Photonic-RF Ultrawideband Wireless Communications Technologies
新型混合光子射频超宽带无线通信技术
- 批准号:
0701448 - 财政年份:2007
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
GOALI: Wavelength-Parallel Compensation and Sensing of Polarization-Mode Dispersion
目标:波长平行补偿和偏振模色散传感
- 批准号:
0501366 - 财政年份:2005
- 资助金额:
$ 37.56万 - 项目类别:
Standard Grant
相似海外基金
Quantum measurements, quantum nonlinear optics, & quantum foundations using entangled photons and ultracold & Rydberg atoms
量子测量、量子非线性光学、
- 批准号:
RGPIN-2020-05767 - 财政年份:2022
- 资助金额:
$ 37.56万 - 项目类别:
Discovery Grants Program - Individual
Generating Highly Entangled Photons from Nonlinear Monolayer Domes
从非线性单层圆顶生成高度纠缠的光子
- 批准号:
DP220102219 - 财政年份:2022
- 资助金额:
$ 37.56万 - 项目类别:
Discovery Projects
Generation, Control and Storage of Broadband Transverse-Mode-Entangled Photons
宽带横模纠缠光子的产生、控制和存储
- 批准号:
2207822 - 财政年份:2022
- 资助金额:
$ 37.56万 - 项目类别:
Continuing Grant
A PAckageD source of Multiplexed Entangled photons (PADME)
多路复用纠缠光子的 PAckageD 源 (PADME)
- 批准号:
10031438 - 财政年份:2022
- 资助金额:
$ 37.56万 - 项目类别:
Collaborative R&D
All-Inorganic Perovskite Nanocrystals as Sources of Polarization-Entangled Photons
全无机钙钛矿纳米晶体作为偏振纠缠光子源
- 批准号:
567967-2022 - 财政年份:2022
- 资助金额:
$ 37.56万 - 项目类别:
Postgraduate Scholarships - Doctoral
Quantum photonic sensors: enabling measurements with unprecedented precision using entangled photons
量子光子传感器:使用纠缠光子实现前所未有的精确测量
- 批准号:
576210-2022 - 财政年份:2022
- 资助金额:
$ 37.56万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Heralded entangled photons to enable quantum networking and computation
预示着纠缠光子将实现量子网络和计算
- 批准号:
DE220101082 - 财政年份:2022
- 资助金额:
$ 37.56万 - 项目类别:
Discovery Early Career Researcher Award
High Rate of Entangled Photons (HiREP)
高纠缠光子率 (HiREP)
- 批准号:
10002790 - 财政年份:2021
- 资助金额:
$ 37.56万 - 项目类别:
Feasibility Studies
QuIC-TAQS: Quantum Networking with Multipartite Entangled Photons
QuIC-TAQS:具有多部分纠缠光子的量子网络
- 批准号:
2137953 - 财政年份:2021
- 资助金额:
$ 37.56万 - 项目类别:
Continuing Grant
Quantum measurements, quantum nonlinear optics, & quantum foundations using entangled photons and ultracold & Rydberg atoms
量子测量、量子非线性光学、
- 批准号:
RGPIN-2020-05767 - 财政年份:2021
- 资助金额:
$ 37.56万 - 项目类别:
Discovery Grants Program - Individual