High-dimensional Frequency Gates in Integrated Photonics for Scalable Quantum Interconnects
用于可扩展量子互连的集成光子学中的高维频率门
基本信息
- 批准号:2034019
- 负责人:
- 金额:$ 40.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Within the overall landscape of quantum science and technology, the development of quantum networks is critical for applications such as distributed quantum computing, connected quantum sensors, and blind quantum computing. While there has been progress in facilitating entanglement and communication between end nodes using satellite-based free space links, for dense and short reach networks these modes of communication are unrealistic given the need for line-of-sight access. In contrast, optical fiber offers tremendous bandwidth and low loss over lengths up to about 100 km, making it the logical choice for local area and metropolitan area quantum networks. However, much of the previous work in quantum networking has utilized photonic degrees of freedom, like polarization, which cannot be easily preserved in standard single-mode fiber. On the other hand, frequency encoding provides natural stability in optical fiber, straightforward measurement with high-efficiency filters and detectors, and compatibility with wavelength-division multiplexing. We propose to harness quantum interference in the spectral domain to implement high-dimensional mode transformations that support increased information per photon for direct quantum communication protocols. To realize the functionality required for these schemes, we will leverage recent advances in silicon photonics and organic electro-optic materials to develop a quantum frequency processor in an integrated photonic platform. A key outcome of the proposed work will be a demonstration of entanglement swapping with spectrally distinguishable photons – a milestone important for moving to a networking paradigm based on spectrally multiplexed and/or frequency-encoded quantum information. In addition, a team of undergraduates will be integrated into this research through long term projects under an experiential learning initiative supported by the College of Engineering. The team will progress from developing lab automation skills and repeating foundational quantum optics experiments to photonic device design and system-level testing toward the end of the project. TechnicalThis project will tackle three critical challenges in the field of quantum interconnects – (i) high-dimensional encoding for information transport more robust to loss, (ii) high-speed, low-loss, and broadband optical switches for nanosecond scale scheduling and routing, and (iii) photon-photon interconnects for entangling heterogeneous nodes/sources. To do so, we will develop a silicon photonics-based quantum frequency processor (QFP) that can implement high-dimensional mode transformations and logic gates. We will overcome the lack of a second order nonlinearity in silicon/silicon nitride by building on progress in organic electro-optic materials, which have been harnessed to realize low-power and high bandwidth modulators. Process advances at silicon photonics foundries will be leveraged to realize pulse shapers with narrow spectral channels, thereby making it possible to then drive a QFP with many RF harmonics over a limited analog bandwidth. This, in turn, will facilitate implementation of high-dimensional quantum frequency gates (d 6). On a parallel track, we will carry out proof-of-concept experiments to validate the generalization of the QFP protocol to higher dimensions. Both tracks will converge toward the realization of a two-state Bell state analyzer for frequency qubits, which will be used in a heralded entanglement generation protocol where photons participating in the joint measurement are spectrally distinguishable. This protocol is generalizable to higher dimensions and may facilitate entanglement swapping of qudits. At the network level, this has the potential to relax constraints on spectral indistinguishability and will be useful in situations where qubits from quantum memories are intentionally shifted (via quantum frequency conversion) to different spectral bins in the telecom band for spectrally multiplexed fiber transmission or when trying to generate entanglement between different types of matter-based qubits or between qubits in different local environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在量子科学与技术的整体格局中,量子网络的发展对于分布式量子计算、连接量子传感器和盲量子计算等应用至关重要。虽然在利用基于卫星的自由空间链路促进终端节点之间的纠缠和通信方面取得了进展,但由于需要视距访问,对于密集和短距离网络来说,这些通信模式是不现实的。相比之下,光纤在长达约100公里的长度上提供巨大的带宽和低损耗,使其成为局域网和城域网量子网络的合理选择。然而,以前在量子网络方面的许多工作都利用了光子自由度,比如偏振,这在标准单模光纤中是不容易保持的。另一方面,频率编码在光纤中提供了天然的稳定性,使用高效滤波器和检测器进行直接测量,并且与波分复用兼容。我们建议利用谱域中的量子干涉来实现高维模式转换,以支持直接量子通信协议中增加的每光子信息。为了实现这些方案所需的功能,我们将利用硅光子学和有机电光材料的最新进展,在集成光子平台上开发量子频率处理器。提出的工作的一个关键成果将是与光谱可区分光子的纠缠交换的演示-这是一个里程碑,对于移动到基于频谱复用和/或频率编码量子信息的网络范式至关重要。此外,一组本科生将通过由工程学院支持的体验式学习计划的长期项目参与这项研究。该团队将从开发实验室自动化技能和重复基础量子光学实验到光子器件设计和系统级测试,直至项目结束。该项目将解决量子互连领域的三个关键挑战——(i)用于信息传输的高维编码,对损耗的鲁棒性更强;(ii)用于纳秒级调度和路由的高速、低损耗和宽带光交换机;(iii)用于纠缠异构节点/源的光子-光子互连。为此,我们将开发一种基于硅光子学的量子频率处理器(QFP),可以实现高维模式转换和逻辑门。我们将通过有机电光材料的进展来克服硅/氮化硅中二阶非线性的缺乏,这些材料已被用于实现低功率和高带宽调制器。硅光子学代工厂的工艺进步将用于实现具有窄频谱通道的脉冲整形器,从而使得在有限的模拟带宽上驱动具有许多RF谐波的QFP成为可能。反过来,这将促进高维量子频率门的实现(d 6)。在平行轨道上,我们将进行概念验证实验,以验证QFP协议在更高维度上的泛化。这两条轨道都将收敛于实现频率量子比特的双态贝尔状态分析仪,这将用于预示的纠缠生成协议,其中参与联合测量的光子在光谱上是可区分的。该协议可推广到更高的维度,并可促进量子的纠缠交换。在网络层面,这有可能放松对频谱不可区分性的限制,并且在有意将量子存储器中的量子比特(通过量子频率转换)转移到电信频带中的不同频谱盒以进行频谱复用光纤传输或试图在不同类型的基于物质的量子比特之间或不同本地环境中的量子比特之间产生纠缠的情况下,这将是有用的。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Biphoton spectral quantum interference for information processing and delay metrology
- DOI:10.1117/12.2656881
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Suparna Seshadri;Hsuan-Hao Lu;J. Lukens;A. Weiner
- 通讯作者:Suparna Seshadri;Hsuan-Hao Lu;J. Lukens;A. Weiner
Time-Resolved Hanbury Brown–Twiss Interferometry of On-Chip Biphoton Frequency Combs Using Vernier Phase Modulation
- DOI:10.1103/physrevapplied.19.034019
- 发表时间:2022-10
- 期刊:
- 影响因子:4.6
- 作者:Karthik V. Myilswamy;Suparna Seshadri;Hsuan-Hao Lu;Mohammed S. Alshaykh;Junqiu Liu;T. Kippenberg;A. Weiner;J. Lukens
- 通讯作者:Karthik V. Myilswamy;Suparna Seshadri;Hsuan-Hao Lu;Mohammed S. Alshaykh;Junqiu Liu;T. Kippenberg;A. Weiner;J. Lukens
Bell state analyzer for spectrally distinct photons
用于光谱不同光子的贝尔态分析仪
- DOI:10.1364/optica.443302
- 发表时间:2022
- 期刊:
- 影响因子:10.4
- 作者:Lingaraju, Navin B.;Lu, Hsuan-Hao;Leaird, Daniel E.;Estrella, Steven;Lukens, Joseph M.;Weiner, Andrew M.
- 通讯作者:Weiner, Andrew M.
Time-resolved second-order coherence of an integrated biphoton frequency comb
集成双光子频率梳的时间分辨二阶相干性
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Karthik V. Myilswamy;Suparna Seshadri;Junqiu Liu;Tobias J. Kippenberg;Andrew M. Weiner;Joseph M. Lukens
- 通讯作者:Joseph M. Lukens
Low-Loss, Narrowband Integrated Si3N4 Pulse Shaper for Quantum Photonic Applications
适用于量子光子应用的低损耗、窄带集成 Si3N4 脉冲整形器
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Lucas M. Cohen;Karthik V. Myilswamy;Navin B. Lingaraju;Andrew M. Weiner
- 通讯作者:Andrew M. Weiner
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Weiner其他文献
Andrew Weiner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Weiner', 18)}}的其他基金
RAISE:TAQS: High Dimensional Frequency Bin Entanglement -- Photonic Integration and Algorithms
RAISE:TAQS:高维频率仓纠缠——光子集成和算法
- 批准号:
1839191 - 财政年份:2018
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Guiding the Evolution of Microresonator Frequency Combs
指导微谐振器频率梳的发展
- 批准号:
1809784 - 财政年份:2018
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Microresonator Frequency Combs as Coherent Transceiver Sources for Multi-Tb/s Optical Communications
微谐振器频率梳作为多 Tb/s 光通信的相干收发器源
- 批准号:
1509578 - 财政年份:2015
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Taming Entangled Photons: Programmable Control of Quantum States of Light
驯服纠缠光子:光量子态的可编程控制
- 批准号:
1407620 - 财政年份:2014
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
MRI: Acquisition of Self-Referenced Frequency Comb for Atomic-Molecular-Optical Physics and Optical Signal Processing Research
MRI:获取自参考频率梳用于原子分子光学物理和光信号处理研究
- 批准号:
1126314 - 财政年份:2011
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
High Repetition Rate Photonic Frequency Combs and Applications
高重复率光子频率梳及其应用
- 批准号:
1102110 - 财政年份:2011
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Innovative Silicon Photonics for Polarization Sensing and Control
用于偏振传感和控制的创新硅光子学
- 批准号:
0925759 - 财政年份:2009
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
Novel Hybrid Photonic-RF Ultrawideband Wireless Communications Technologies
新型混合光子射频超宽带无线通信技术
- 批准号:
0701448 - 财政年份:2007
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
GOALI: Wavelength-Parallel Compensation and Sensing of Polarization-Mode Dispersion
目标:波长平行补偿和偏振模色散传感
- 批准号:
0501366 - 财政年份:2005
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
相似国自然基金
转录延伸因子参与粗糙脉孢菌生物钟基因frequency表达调控分子机制的研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
CAREER: Frequency-Constrained Energy Scheduling for Renewable-Dominated Low-Inertia Power Systems
职业:可再生能源为主的低惯量电力系统的频率约束能量调度
- 批准号:
2337598 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Continuing Grant
CAREER: Ultralow phase noise signal generation using Kerr-microresonator optical frequency combs
职业:使用克尔微谐振器光学频率梳生成超低相位噪声信号
- 批准号:
2340973 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Continuing Grant
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
- 批准号:
EP/X040844/1 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Research Grant
Terahertz-frequency sensors for atmospheric chemistry and space research (renewal)
用于大气化学和空间研究的太赫兹频率传感器(更新)
- 批准号:
MR/Y011775/1 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Fellowship
PopHorn: A deployable folding horn antenna for low frequency space-based applications
PopHorn:适用于低频天基应用的可展开折叠喇叭天线
- 批准号:
ST/Y509942/1 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Research Grant
CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing
职业:用于高效和自适应前端信号处理的射频压电声学微系统
- 批准号:
2339731 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Continuing Grant
ERI: Biological Effects of Low-Frequency, Low-Intensity Ultrasound on Endothelial Cell and Macrophage Co-Culture
ERI:低频、低强度超声对内皮细胞和巨噬细胞共培养的生物学效应
- 批准号:
2347558 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant
CAREER: Frequency Agile Real-Time Reconfigurable RF Analog Co-Processor Design Leveraging Engineered Nanoparticle and 3D Printing
职业:利用工程纳米颗粒和 3D 打印进行频率捷变实时可重构射频模拟协处理器设计
- 批准号:
2340268 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Continuing Grant
High Frequency Channel for CHAI
CHAI 高频通道
- 批准号:
530175728 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Major Research Instrumentation
Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
- 批准号:
2344664 - 财政年份:2024
- 资助金额:
$ 40.55万 - 项目类别:
Standard Grant














{{item.name}}会员




