Microresonator Frequency Combs as Coherent Transceiver Sources for Multi-Tb/s Optical Communications
微谐振器频率梳作为多 Tb/s 光通信的相干收发器源
基本信息
- 批准号:1509578
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Title:Microresonator Optical Frequency Combs as Coherent Transceiver Sources for Ultrahigh Speed Lightwave CommunicationsGeneral, nontechnical description:Fiber optics is the key transmission technology for high-speed internet and as such has a tremendous impact on society. This proposal seeks to replace large arrays of lasers commonly used to provide multiple data channels in fiber systems with a single nanophotonic device known as an optical microresonator. Under appropriate conditions the microresonator can generate a multiplicity of precisely evenly spaced optical frequencies termed a frequency comb. Each of the frequencies can be used to carry independent data channels over the optical fiber, much as different radio frequencies are used to carry different channels in radio transmission. By replacing the large array of lasers, the proposed microresonator-based light source can potentially reduce cost and complexity, while opening up new opportunities based on the precision of the frequency grid generated. Advances in this novel light source may also help move a variety of other applications out of the laboratory, including high precision time transfer for advanced navigation, environmental sensing, and precision radar. This research project will support two graduate students and should provide outstanding opportunities for broad training in areas of cutting-edge technology. An international collaboration with an advanced optical communications laboratory in Sweden is proposed in order to characterize the performance of the developed devices for state-of-the-art lightwave communications. The proposed collaboration should enhance student training by providing them with opportunity for international collaboration, both in hosting visiting researchers at Purdue and in gaining experience in an advanced communications laboratory abroad.Technical descriptionOptical frequency combs, in which a multiplicity of equally spaced optical frequencies is generated via nonlinear wave mixing in high quality factor microresonators excited by a single frequency laser, are the subject of intense research. This proposal seeks to advance the state-of-the-art in microresonator frequency combs, or simply "micro-combs," in directions relevant to their application in coherent multiwavelength optical communications supporting transmission rates of Tb/s (1012 bit/s) and above. In particular, this projects aims for the first time to realize a frequency matched set of micro-comb chips that can function as a transceiver pair, one at the transmitter of an optical communications system, the other at the receiver. In order to test micro-comb performance in a modern communications testbed and demonstrate high bit rate, multiwavelength fiber transmission, collaboration with researchers at the Chalmers University of Technology Fiber-Optic Communication Laboratory is proposed. The collaboration between Purdue (micro-combs) and Chalmers (fiber communications) brings together expertise and facilities that are difficult to find at any single institution, giving potential for significant advances. The work proposed breaks new ground both in micro-comb development and in application to advanced communications. In terms of micro-combs, most work focuses on devices characterized by anomalous group velocity dispersion, for which a well-known instability can initiate comb formation. However, interactions between transverse modes of the waveguides utilized often hinders formation of coherent, low noise combs. Here an alternate approach, which relies on devices formed from normal dispersion waveguides and exploiting different comb generation physics, is proposed. Recent work at Purdue has shown that for such devices, mode interactions can be beneficial in initiating combs and steering them to coherence. A novel microresonator structure which uses thermo-optic heaters to control mode interactions and facilitate comb initiation is proposed. The thermo-optic heaters also enable frequency tuning of the comb; the current proposal will seek to obtain detailed understanding. By developing micro-combs that can be tuned and matched in frequency, the project seeks to demonstrate for the first time micro-combs functioning as a coherent transceiver pair for communications at aggregate rates exceeding 1 Tb/s.
标题:微谐振器光频梳作为超高速光波通信的相干收发器源一般、非技术性描述:光纤是高速互联网的关键传输技术,因此对社会产生巨大影响。 该提案旨在用称为光学微谐振器的单个纳米光子器件取代通常用于在光纤系统中提供多个数据通道的大型激光器阵列。 在适当的条件下,微谐振器可以产生多个精确均匀间隔的光学频率,称为频率梳。 每个频率都可用于通过光纤承载独立的数据通道,就像不同的射频用于在无线电传输中承载不同的通道一样。 通过取代大型激光器阵列,所提出的基于微谐振器的光源可以潜在地降低成本和复杂性,同时根据所生成的频率网格的精度开辟新的机会。 这种新型光源的进步还可能有助于将各种其他应用移出实验室,包括用于先进导航、环境传感和精密雷达的高精度时间传输。 该研究项目将支持两名研究生,并为尖端技术领域的广泛培训提供绝佳的机会。 建议与瑞典先进的光通信实验室进行国际合作,以表征所开发的最先进光波通信设备的性能。 拟议的合作应该通过为学生提供国际合作的机会来加强学生的培训,无论是在普渡大学接待访问研究人员,还是在国外先进的通信实验室获得经验。技术描述光学频率梳是密集研究的主题,其中通过单频激光激发的高品质因数微谐振器中的非线性波混合产生多个等间隔的光学频率。 该提案旨在在与支持 Tb/s(1012 位/秒)及以上传输速率的相干多波长光通信中的应用相关的方向上推进微谐振器频率梳(或简称“微梳”)的最新技术。 特别是,该项目的目标是首次实现一组频率匹配的微梳芯片,这些芯片可以充当收发器对,一个位于光通信系统的发射器,另一个位于接收器。为了在现代通信测试台中测试微梳性能并演示高比特率、多波长光纤传输,建议与查尔姆斯理工大学光纤通信实验室的研究人员合作。 普渡大学(微梳)和查尔默斯大学(光纤通信)之间的合作汇集了任何单一机构都难以找到的专业知识和设施,从而带来了重大进步的潜力。 所提出的工作在微梳开发和先进通信应用方面都开辟了新天地。 就微梳而言,大多数工作都集中在具有反常群速度色散特征的装置上,众所周知的不稳定性可以引发梳的形成。 然而,所使用的波导的横向模式之间的相互作用常常阻碍相干、低噪声梳的形成。 这里提出了一种替代方法,该方法依赖于由正常色散波导形成的器件并利用不同的梳状生成物理原理。 普渡大学最近的研究表明,对于此类设备,模式交互有助于启动梳并引导它们达到连贯性。 提出了一种新颖的微谐振器结构,该结构使用热光加热器来控制模式相互作用并促进梳状启动。热光加热器还可以调节梳子的频率;当前的提案将寻求获得详细的理解。 通过开发可调谐和匹配频率的微梳,该项目试图首次证明微梳可作为相干收发器对,以超过 1 Tb/s 的总速率进行通信。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Weiner其他文献
Andrew Weiner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Weiner', 18)}}的其他基金
High-dimensional Frequency Gates in Integrated Photonics for Scalable Quantum Interconnects
用于可扩展量子互连的集成光子学中的高维频率门
- 批准号:
2034019 - 财政年份:2020
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
RAISE:TAQS: High Dimensional Frequency Bin Entanglement -- Photonic Integration and Algorithms
RAISE:TAQS:高维频率仓纠缠——光子集成和算法
- 批准号:
1839191 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Guiding the Evolution of Microresonator Frequency Combs
指导微谐振器频率梳的发展
- 批准号:
1809784 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Taming Entangled Photons: Programmable Control of Quantum States of Light
驯服纠缠光子:光量子态的可编程控制
- 批准号:
1407620 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
MRI: Acquisition of Self-Referenced Frequency Comb for Atomic-Molecular-Optical Physics and Optical Signal Processing Research
MRI:获取自参考频率梳用于原子分子光学物理和光信号处理研究
- 批准号:
1126314 - 财政年份:2011
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
High Repetition Rate Photonic Frequency Combs and Applications
高重复率光子频率梳及其应用
- 批准号:
1102110 - 财政年份:2011
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Innovative Silicon Photonics for Polarization Sensing and Control
用于偏振传感和控制的创新硅光子学
- 批准号:
0925759 - 财政年份:2009
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Novel Hybrid Photonic-RF Ultrawideband Wireless Communications Technologies
新型混合光子射频超宽带无线通信技术
- 批准号:
0701448 - 财政年份:2007
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
GOALI: Wavelength-Parallel Compensation and Sensing of Polarization-Mode Dispersion
目标:波长平行补偿和偏振模色散传感
- 批准号:
0501366 - 财政年份:2005
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
转录延伸因子参与粗糙脉孢菌生物钟基因frequency表达调控分子机制的研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
CAREER: Ultralow phase noise signal generation using Kerr-microresonator optical frequency combs
职业:使用克尔微谐振器光学频率梳生成超低相位噪声信号
- 批准号:
2340973 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
- 批准号:
EP/X040844/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
Ultra-scalable clock and carrier sychronisation for optical and wireless networks using sequentially-locked optical frequency combs
使用顺序锁定光学频率梳实现光学和无线网络的超可扩展时钟和载波同步
- 批准号:
10089417 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Collaborative R&D
Precision Rulers for the Visible - Chip Scale Optical Frequency Combs
可见光精密尺 - 芯片级光学频率梳
- 批准号:
DE230100964 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Discovery Early Career Researcher Award
Optical metrology using optical frequency combs and hollow core fibres
使用光学频率梳和空心光纤的光学计量
- 批准号:
2889068 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Studentship
Collaborative Research: Toward universal quantum computing with heterogeneously integrated quantum optical frequency combs
合作研究:利用异构集成量子光学频率梳实现通用量子计算
- 批准号:
2219760 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
High-Throughput and Energy-Efficient Data Centre Interconnects Using Frequency Combs and Coherent Detection
使用频率梳和相干检测的高吞吐量和节能数据中心互连
- 批准号:
545670-2020 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Postgraduate Scholarships - Doctoral
Collaborative Research: Toward universal quantum computing with heterogeneously integrated quantum optical frequency combs
合作研究:利用异构集成量子光学频率梳实现通用量子计算
- 批准号:
2219672 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Next-Generation LIDAR with Novel Microresonator Frequency Combs
具有新型微谐振器频率梳的下一代激光雷达
- 批准号:
DE210101904 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Discovery Early Career Researcher Award
Optical frequency combs for multichannel optical vibration sensing
用于多通道光学振动传感的光学频率梳
- 批准号:
555621-2020 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Alliance Grants














{{item.name}}会员




