Closing the terahertz gap with a new-family of terahertz devices based on two-dimensional materials
利用基于二维材料的新系列太赫兹器件缩小太赫兹差距
基本信息
- 批准号:1407959
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(Non-Technical) The goal of this project is to develop a new generation of electronic devices capable of efficiently operating at frequencies well above those attainable in current state-of-the-art electronic devices, into the terahertz region of the spectrum. Over the past decade, the terahertz frequency regime, the region of the electromagnetic spectrum located between the microwave and the infra-red, has become the subject of much attention due to its wide range of unique applications in diverse areas such as astronomy, imaging, spectroscopy, security, communications, and so on. Although significant progress has been recently achieved, there is still a need for devices efficiently operating at these frequencies. In particular, there is a necessity for low-cost, compact sources of terahertz radiation. In this context, the research targeted in this proposal tries to provide an answer for a long standing problem for the terahertz community: how to achieve power gain at terahertz frequencies in compact, electronic devices at room-temperature. The proposed devices can offer low cost of manufacturing, and therefore will find many potential industrial applications in future compact terahertz systems (e.g. "terahertz chips" for communications, security, and biomedical applications). This research vision is interlaced with an educational vision of mentoring new generations of graduate and undergraduate students in the field of materials, high frequency electronics, terahertz, and optics and stimulating their critical thinking and curiosity by providing them with hands-on experience in cutting-edge research. This is of significant importance given the future projected needs for highly trained engineers and scientists in the United States, and in particular in the state of Utah. The proposed research and educational plans will leverage the ongoing research activities on materials, electronics and optoelectronics and the current outreach programs at the University of Utah.(Technical) This project aims to develop active terahertz electronic devices (terahertz detectors, oscillators, and amplifiers) based on the interplay between resonant tunneling and electron plasma waves in stacked two-dimensional material layers. These devices promise power gains 7dB at frequencies above 2 THz when in amplifier configurations, which has been proven to be difficult to achieve in traditional high-frequency electronic-devices. The fundamental mechanism enabling gain at terahertz frequencies in these devices is the interplay between negative differential conductance (NDC) and the electron plasma waves in a two-dimensional electron gas (2DEG), i.e. the NDC provides a gain medium for the plasma waves excited in the semiconductor 2DEG. All the challenges associated with these devices are going to be identified and addressed at the materials, device fabrication, and design stages. Of these 2D materials, graphene, can be an excellent platform for plasmonic transport owed to its large room temperature mobility thus low plasmonic damping. Moreover, its intrinsic 2D nature, and its ease of transfer to arbitrary substrates can allow for unlimited degrees of freedom of integration, reduce the cost with respect to that in III-V semiconductors, and allow for more simple fabrication processes. We will also answer questions regarding high quality 2D material preparation: control and optimization of domain size, integrity, inclusions, interface boundaries, contamination, fidelity of crystallography / alignment between stacked layers, and terminating carbon bonding.
(非技术)该项目的目标是开发新一代的电子设备,能够有效地在频率上运行,远高于当前最先进的电子设备所能达到的频率,进入太赫兹频谱区域。在过去的十年中,太赫兹频率区,即位于微波和红外之间的电磁波谱区域,由于其在天文学、成像、光谱学、安全、通信等各个领域的广泛独特应用而成为备受关注的主题。尽管最近取得了重大进展,但仍然需要在这些频率上有效运行的设备。特别是,需要低成本、紧凑的太赫兹辐射源。在这种背景下,本提案的研究目标试图为太赫兹社区长期存在的问题提供答案:如何在室温下的紧凑电子设备中实现太赫兹频率的功率增益。所提出的器件可以提供低制造成本,因此将在未来的紧凑型太赫兹系统中找到许多潜在的工业应用。用于通信、安全和生物医学应用的“太赫兹芯片”)。这一研究愿景与指导新一代研究生和本科生在材料、高频电子、太赫兹和光学领域的教育愿景交织在一起,并通过为他们提供前沿研究的实践经验来激发他们的批判性思维和好奇心。考虑到美国,特别是犹他州未来对训练有素的工程师和科学家的预计需求,这一点非常重要。拟议的研究和教育计划将利用犹他大学正在进行的材料、电子和光电子方面的研究活动以及目前的外展项目。(技术)本项目旨在开发基于共振隧道和电子等离子体波在堆叠二维材料层中的相互作用的有源太赫兹电子器件(太赫兹探测器、振荡器和放大器)。在放大器配置中,这些设备承诺在2太赫兹以上的频率上获得7dB的功率增益,这在传统的高频电子设备中已被证明很难实现。在这些器件中实现太赫兹频率增益的基本机制是负差分电导(NDC)与二维电子气体(2DEG)中的电子等离子体波之间的相互作用,即NDC为半导体2DEG中激发的等离子体波提供了增益介质。与这些设备相关的所有挑战都将在材料、设备制造和设计阶段被识别和解决。在这些二维材料中,石墨烯由于其大的室温迁移率和低的等离子体阻尼,可以成为等离子体输运的绝佳平台。此外,其固有的二维性质,其易于转移到任意基片可以允许无限自由度的集成,降低成本相对于III-V半导体,并允许更简单的制造工艺。我们还将回答有关高质量二维材料制备的问题:控制和优化畴大小,完整性,夹杂物,界面边界,污染,晶体学保真度/堆叠层之间的对齐以及终止碳键。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Berardi Sensale-Rodriguez其他文献
Compact bandpass pixelated microwave filters with short-circuited stubs via inverse design
通过逆设计实现带有短路短截线的紧凑带通像素化微波滤波器
- DOI:
10.1038/s41598-025-10666-y - 发表时间:
2025-07-15 - 期刊:
- 影响因子:3.900
- 作者:
Miguel A. Gomez;Wei Jia;Steve Blair;Berardi Sensale-Rodriguez - 通讯作者:
Berardi Sensale-Rodriguez
Binary phase-only gallium oxide diffractive optical element for beam shaping
用于光束整形的二元纯相氧化镓衍射光学元件
- DOI:
10.1038/s41598-025-89663-0 - 发表时间:
2025-02-11 - 期刊:
- 影响因子:3.900
- 作者:
Wei Jia;Steve Blair;Berardi Sensale-Rodriguez - 通讯作者:
Berardi Sensale-Rodriguez
Berardi Sensale-Rodriguez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Berardi Sensale-Rodriguez', 18)}}的其他基金
PFI-TT: Development of Novel Lens Technology for Next Generation Laser Manufacturing
PFI-TT:开发用于下一代激光制造的新型透镜技术
- 批准号:
2234413 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Reconfigurable free-form metamaterials: a new design paradigm for integrated optoelectronics based on 2D materials
可重构自由形态超材料:基于二维材料的集成光电子学新设计范式
- 批准号:
1936729 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Hybrid Organic-Inorganic Lead-Halide Perovskite-Based Active Terahertz Devices
混合有机-无机卤化铅钙钛矿基有源太赫兹器件
- 批准号:
1810096 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: THz active metamaterials employing thin-film semiconductors
职业:采用薄膜半导体的太赫兹活性超材料
- 批准号:
1351389 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
量子限制杂质原子作为单电子量子点对Terahertz远红外发光器的应用
- 批准号:60776044
- 批准年份:2007
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Terahertz Imaging for Side-Channel Attacks
用于侧信道攻击的太赫兹成像
- 批准号:
NI230100072 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
National Intelligence and Security Discovery Research Grants
Terahertz-frequency sensors for atmospheric chemistry and space research (renewal)
用于大气化学和空间研究的太赫兹频率传感器(更新)
- 批准号:
MR/Y011775/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Fellowship
Spatial light modulator by MEMS reconfigurable metamaterial for Terahertz wave
太赫兹波MEMS可重构超材料空间光调制器
- 批准号:
23K20256 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Next Generation Terahertz Materials
下一代太赫兹材料
- 批准号:
DP240103404 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Discovery Projects
Leaky Dielectric Platform for Integrated Terahertz Components
用于集成太赫兹组件的漏电介质平台
- 批准号:
DP240100162 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Discovery Projects
6G Terahertz Communications for Future Heterogeneous Wireless Network
面向未来异构无线网络的 6G 太赫兹通信
- 批准号:
EP/Y035135/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
AuNPs and DNA Aptamer-Driven Terahertz Sensor for Highly Sensitive Detection of Small Molecules
AuNP 和 DNA 适配体驱动的太赫兹传感器,用于小分子的高灵敏度检测
- 批准号:
24K07524 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Resonant tunneling diode Terahertz oscillator with superlattice heterostructure for high output power
具有超晶格异质结构的谐振隧道二极管太赫兹振荡器,可实现高输出功率
- 批准号:
24K17329 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
PFI-TT: Scale up of new materials that generate terahertz-frequency light for advanced scanning applications
PFI-TT:扩大产生太赫兹频率光的新材料的规模,用于高级扫描应用
- 批准号:
2345726 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Development of GaN quantum cascade laser to cover the unexplored terahertz wave frequencies
开发GaN量子级联激光器以覆盖未探索的太赫兹波频率
- 批准号:
24K00953 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)