Enabling Millimeter Scale Deeply Implanted Glucose Sensors through Ultrasonic Power Transfer and a Novel Glucose Sensing Mechanism

通过超声波功率传输和新型葡萄糖传感机制实现毫米级深度植入葡萄糖传感器

基本信息

  • 批准号:
    1408265
  • 负责人:
  • 金额:
    $ 37.51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Proposal Title:Enabling Millimeter Scale Deeply Implanted Glucose Sensors through Ultrasonic Power Transfer and a Novel Glucose Sensing Mechanism Proposal Goal:The goal of the proposed project is to enable a new mode for power transfer to and communication with a deeply implanted intraluminal glucose monitor. The current state of the art in integrated circuit and MEMS sensing technologies enables cubic mm size implementations of complex systems for implanted sensors. However, such implementations are never actually realized because the necessary power and communications systems are too large. At very small sizes and large implantdepths acoustic energy transfer through human tissue is fundamentally more efficient than either near field electromagnetic (EM) or far field (RF). The long term goal of this research is to create an ultrasonic power and communications platform that will enable unobtrusive long term monitoring of health status through implanted sensing and therapeutic devices.Nontechnical Abstract: The past few decades have seen a dramatic increase in the prevalence of diabetes mellitus and obesity. The chief complications of these chronic diseases are cardiac disease, kidney failure leading to dialysis, retinopathy leading to blindness, and neuropathy and vascular insufficiency leading to amputations. These exert a huge toll, both in financial terms and in human suffering. Our research directly addresses this problem by developing new technologies that will enable long term implantable glucose monitors without the need for transcutaneous wires. This project addresses two fundamental problems with the current state of the art in implantable glucose sensors: lack of a suitable power supply or power transmission mechanism, and the short lifetime and frequent need for re-calibration of glucose oxidase based sensors. As part of this project, the PIs will create an ultrasonic power transmission platform that will allow the glucose sensor (or any highly miniaturized implantable bio-sensor) to be directly powered by ultrasonic energy. At very small sizes and large implant depths acoustic energy transfer through human tissue is fundamentally more efficient than either near field electromagnetic (EM) or far field (RF), the two most common methods of powering implanted sensors. This project will investigate micro-scale acoustic transducer designs and architectures that enable higher power density transmission than either EM or RF transmission through human tissue. To address the second fundamental problem with the state of the art, the PIs will explore a new glucose sensing method using hydrogels with embedded magnetic particles. This method overcomes several limitations that plague current enzymatic continuous glucose sensors and also allows the electronics to be robustly encapsulated as the electronic sensing element does not have to be in direct contact with the hydrogel. Together these advancements promise to enable a vastly improved method of sensing blood glucose and delivering power to any highly miniaturized implantable bio-sensor.Technical Abstract: This research addresses two major challenges that limit the potential of implanted biosensors in general, and glucose monitors in particular. The first is transferring energy at sufficient densities to enable extreme miniaturization. While still more efficient than RF or EM energy transfer, at very small scales, standard ultrasonic transducers rapidly start to lose efficiency due to the interplay between the optimal device thickness, acoustic wavelength, and the frequency dependence of acoustic absorption in tissue. Our guiding hypothesis is that alternative piezoelectric structures will be more efficient at these small sizes. Our work will couple acoustic transmission models, transducer design, and experimental work to empirically determine key interaction effects probing the limits of acoustic power generation at very small scales.Secondly, the research will address a significant issue with glucose sensors, namely that their lifetime is severely limited and they must be frequently re-calibrated because of their reliance on the availability glucose oxidase and oxygen to perform accurate measurements. The PIs will explore a new method using hydrogels with embedded aligned magnetic particles to sense glucose rather than the traditional electrochemical process. These functionalized hydrogels swell in the presence of glucose. The swelling is sensed through the change in inductance value of a miniature coil placed next to the hydrogel. This method not only overcomes several limitations that plague current enzymatic continuous glucose sensors but also allows the electronics to be robustly encapsulated as the sensing coil does not have to be in direct contact with the hydrogel. The sensing coil will be multi-purposed to send data back from the implant in a mm scale system demonstration. Taken together, the three different aspects of this work could provide a basis for fundamentally smaller, longer life implanted sensors.
提案标题:通过超声功率传输和新型葡萄糖传感机制实现毫米级深度植入葡萄糖传感器提案目标:拟议项目的目标是实现与深度植入腔内葡萄糖监测仪进行功率传输和通信的新模式。集成电路和MEMS感测技术的当前技术水平使得能够实现用于植入传感器的立方毫米尺寸的复杂系统。然而,这样的实现从未实际实现,因为必要的电力和通信系统太大。在非常小的尺寸和大的植入深度下,通过人体组织的声能传递从根本上比近场电磁(EM)或远场(RF)更有效。这项研究的长期目标是创建一个超声波电源和通信平台,将使不显眼的长期监测的健康状况,通过植入传感和治疗device.Nontechnical摘要:在过去的几十年中,糖尿病和肥胖症的患病率急剧增加。 这些慢性病的主要并发症是心脏病、导致透析的肾衰竭、导致失明的视网膜病以及导致截肢的神经病和血管功能不全。这些都造成巨大的经济损失和人类痛苦。 我们的研究通过开发新技术直接解决了这个问题,这些新技术将使长期植入式葡萄糖监测器成为可能,而无需经皮导线。 该项目解决了植入式葡萄糖传感器当前技术水平的两个基本问题:缺乏合适的电源或功率传输机制,以及基于葡萄糖氧化酶的传感器的寿命短且经常需要重新校准。 作为该项目的一部分,PI将创建一个超声波功率传输平台,允许葡萄糖传感器(或任何高度小型化的植入式生物传感器)直接由超声波能量供电。 在非常小的尺寸和大的植入深度下,通过人体组织的声能传递从根本上比近场电磁(EM)或远场(RF)更有效,这是为植入传感器供电的两种最常见的方法。 该项目将研究微尺度声换能器的设计和架构,使更高的功率密度传输比电磁或射频传输通过人体组织。 为了解决现有技术的第二个基本问题,PI将探索一种使用嵌入磁性颗粒的水凝胶的新葡萄糖传感方法。 该方法克服了困扰当前酶连续葡萄糖传感器的几个限制,并且还允许电子器件被稳健地封装,因为电子感测元件不必与水凝胶直接接触。 这些进步共同承诺,使一个大大改善的方法,检测血糖和提供电力的任何高度微型化的植入式bio-sensor.Technical摘要:这项研究解决了两个主要的挑战,限制了潜在的植入式生物传感器一般,和葡萄糖监测仪特别。第一个是以足够的密度转移能量,以实现极端的小型化。 虽然仍然比RF或EM能量传递更有效,但在非常小的尺度下,标准超声换能器由于最佳装置厚度、声波波长和组织中的声吸收的频率依赖性之间的相互作用而迅速开始失去效率。我们的指导假设是,替代压电结构将更有效地在这些小尺寸。我们的工作将耦合声学传输模型,换能器设计和实验工作,以经验性地确定关键的相互作用效应,从而在非常小的尺度上探索声学发电的极限。也就是说,它们的寿命是非常有限的,并且它们必须经常被更换,校准,因为它们依赖于葡萄糖氧化酶和氧气的可用性来执行精确的测量。PI将探索一种新的方法,使用嵌入对齐磁性颗粒的水凝胶来检测葡萄糖,而不是传统的电化学过程。 这些官能化的水凝胶在葡萄糖存在下溶胀。 通过放置在水凝胶旁边的微型线圈的电感值的变化来感测溶胀。 该方法不仅克服了困扰当前酶连续葡萄糖传感器的几个限制,而且还允许电子器件被稳健地封装,因为感测线圈不必与水凝胶直接接触。 传感线圈将具有多种用途,可在mm级系统演示中从植入物发回数据。总的来说,这项工作的三个不同方面可以为更小,更长寿命的植入式传感器提供基础。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A MEMS-Scale Ultrasonic Power Receiver for Biomedical Implants
  • DOI:
    10.1109/lsens.2019.2904194
  • 发表时间:
    2019-04-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Basaeri, Hamid;Yu, Yuechuan;Roundy, Shad
  • 通讯作者:
    Roundy, Shad
An In-Vitro Study of Wireless Inductive Sensing and Robust Packaging for Future Implantable Hydrogel-Based Glucose Monitoring Applications
针对未来植入式水凝胶血糖监测应用的无线感应传感和坚固封装的体外研究
  • DOI:
    10.1109/jsen.2019.2949056
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Yu, Yuechuan;Nguyen, Tram;Tathireddy, Prashant;Roundy, Shad;Young, Darrin J.
  • 通讯作者:
    Young, Darrin J.
Acoustic power transfer for biomedical implants using piezoelectric receivers: effects of misalignment and misorientation
Architectures for wrist-worn energy harvesting
  • DOI:
    10.1088/1361-665x/aa94d6
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Rantz, R.;Halim, M. A.;Roundy, S.
  • 通讯作者:
    Roundy, S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shad Roundy其他文献

Preface for the Special Issue of Energy Harvesting
Cutaneous Leishmaniasis of the Lower Lip in a United States Soldier
  • DOI:
    10.1016/j.joms.2007.12.045
  • 发表时间:
    2008-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shad Roundy;Jeffrey Almony;Theodore Zislis
  • 通讯作者:
    Theodore Zislis

Shad Roundy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shad Roundy', 18)}}的其他基金

U.S.-Ireland R&D Partnership: Highly efficient magnetoelectric nano-antenna arrays with wide operational bandwidth
美国-爱尔兰 R
  • 批准号:
    2320320
  • 财政年份:
    2023
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Standard Grant
Collaborative Research: Space Charge Induced Flexoelectric (SCIF) Transducers: A New Technology to Eliminate the Environmental Cost of Leaded Piezoelectric Transducers
合作研究:空间电荷感应柔性 (SCIF) 传感器:消除含铅压电传感器环境成本的新技术
  • 批准号:
    2247453
  • 财政年份:
    2023
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Standard Grant
CAREER: Powering Micro Scale Biomedical Implants through Controlled Low Frequency Magnetic Fields and Multiferroic Transducers
职业:通过受控低频磁场和多铁性换能器为微型生物医学植入物提供动力
  • 批准号:
    1651438
  • 财政年份:
    2017
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Standard Grant
BRIGE: Adaptive Vibrational Energy Harvesting Systems through Semi-Passive Control of Nonlinear Oscillators
BRIGE:通过非线性振荡器半被动控制的自适应振动能量收集系统
  • 批准号:
    1342070
  • 财政年份:
    2013
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Standard Grant

相似国自然基金

Millimeter-waveHolographicAntennaandItsIntegrationwithActiveChip
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    80 万元
  • 项目类别:

相似海外基金

Mid-scale RI-2: Advanced Millimeter Survey Instrumentation in Chile
中型 RI-2:智利的先进毫米波测量仪器
  • 批准号:
    2153201
  • 财政年份:
    2023
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Cooperative Agreement
Intelligent Modeling and Design of Medium to Large Scale Microwave and Millimeter-Wave Circuits for Communication Systems
通信系统中大规模微波和毫米波电路的智能建模和设计
  • 批准号:
    RGPIN-2017-05872
  • 财政年份:
    2022
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Discovery Grants Program - Individual
I-Corps Team: Battery-Free, Millimeter-Scale Silicon Devices for Tempertature Monitoring
I-Corps 团队:用于温度监测的无电池毫米级硅器件
  • 批准号:
    2135463
  • 财政年份:
    2021
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Standard Grant
Intelligent Modeling and Design of Medium to Large Scale Microwave and Millimeter-Wave Circuits for Communication Systems
通信系统中大规模微波和毫米波电路的智能建模和设计
  • 批准号:
    RGPIN-2017-05872
  • 财政年份:
    2021
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Discovery Grants Program - Individual
Safety evaluation of human exposure using large-scale analysis based on ultra-high resolution body model in quasi-millimeter and millimeter wave bands
基于准毫米波和毫米波波段超高分辨率人体模型的大规模分析人体暴露安全性评估
  • 批准号:
    21K04039
  • 财政年份:
    2021
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Intelligent Modeling and Design of Medium to Large Scale Microwave and Millimeter-Wave Circuits for Communication Systems
通信系统中大规模微波和毫米波电路的智能建模和设计
  • 批准号:
    RGPIN-2017-05872
  • 财政年份:
    2020
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Discovery Grants Program - Individual
1-nm-wide X-ray beams by developing millimeter-scale ultra-precision reflective optics
通过开发毫米级超精密反射光学器件实现 1 nm 宽的 X 射线束
  • 批准号:
    20J21562
  • 财政年份:
    2020
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Cosmology with Millimeter-Wave Intensity Mapping: Developing A New Probe of Large-Scale Structure
毫米波强度测绘宇宙学:开发大尺度结构的新型探测器
  • 批准号:
    2001802
  • 财政年份:
    2020
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Fellowship Award
Intelligent Modeling and Design of Medium to Large Scale Microwave and Millimeter-Wave Circuits for Communication Systems
通信系统中大规模微波和毫米波电路的智能建模和设计
  • 批准号:
    RGPIN-2017-05872
  • 财政年份:
    2019
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Discovery Grants Program - Individual
Intelligent Modeling and Design of Medium to Large Scale Microwave and Millimeter-Wave Circuits for Communication Systems
通信系统中大规模微波和毫米波电路的智能建模和设计
  • 批准号:
    RGPIN-2017-05872
  • 财政年份:
    2018
  • 资助金额:
    $ 37.51万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了