Collaborative Research: Space Charge Induced Flexoelectric (SCIF) Transducers: A New Technology to Eliminate the Environmental Cost of Leaded Piezoelectric Transducers

合作研究:空间电荷感应柔性 (SCIF) 传感器:消除含铅压电传感器环境成本的新技术

基本信息

  • 批准号:
    2247453
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Non-technical descriptionPiezoelectric materials convert mechanical force to electrical voltage and vice-versa. These materials are used in precision sensors, optics, acoustic transmitters and receivers, and energy harvesting devices. Most high-performance piezoelectric materials contain lead. It is estimated that the annual worldwide production of lead-containing piezoelectric materials is between 1250 and 4000 tons. The lead contained in these materials represents an environmental risk all along the value chain, from mining to end device disposal, and is increasingly subject to health, safety, and environmental legislation. This project will develop an environmentally benign replacement for piezoelectric transducers. This new technology will be based on a newly observed phenomenon in semiconducting materials including silicon. In this project, the team of researchers will fabricate nano-structured silicon devices that can replace lead-containing piezoelectric materials. In addition to creating a replacement for lead-containing piezoelectrics, the study of this new technology will enhance the scientific community’s understanding of electrical-mechanical interaction in solid materials more generally. The newly created devices will be transformative for sensing, actuation, and energy harvesting applications.Technical descriptionLead zirconate titanate (PZT), or other lead-containing piezoelectrics, are widely used in precision sensors, actuators for optics, acoustic transmitters and receivers, energy harvesters, and precision positioning devices. Despite the significant environmental concerns, there is still no good replacement for PZT. In this project we will make use of a newly observed phenomenon, space charge induced flexoelectricity, to create a high-performance alternative to PZT transducers. Flexoelectricity refers to electrical polarization of a dielectric material in response to strain gradient. It has recently been observed that semiconducting materials, including silicon, with insulating interfaces (i.e., space charge materials) exhibit enhanced flexoelectricity. In this project the team of researchers will fabricate arrays of nano-structured silicon pyramids to create and study space charge induced flexoelectric transducers. In tandem with the fabrication work, the investigators will create a computational framework for simulating the interaction between the strain gradient, the electric field, and the diffusion of mobile charge carriers. This computational framework will enable a detailed investigation into the mechanisms driving space charge flexoelectricity and allow optimization of transducers. Such transducers could have effective piezoelectric coefficients an order of magnitude higher than state-of-the-art micro-scale piezoelectric materials. Given that they are made from silicon, they fill the need for a non-toxic, environmentally benign replacement to high performance piezoelectric transducers. Space charge induced flexoelectric transducers will be transformative for a broad range of smart materials applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
压电材料将机械力转换为电压,反之亦然。这些材料用于精密传感器、光学器件、声学发射器和接收器以及能量收集设备。大多数高性能压电材料都含有铅。据估计,全世界含铅压电材料的年产量在1250至4000吨之间。这些材料中所含的铅在价值链的整个沿着(从采矿到终端设备处置)都存在环境风险,并且越来越多地受到健康、安全和环境法规的约束。该项目将开发一种对环境无害的压电换能器替代品。这项新技术将基于在包括硅在内的半导体材料中新观察到的现象。在这个项目中,研究小组将制造纳米结构的硅器件,可以取代含铅的压电材料。除了替代含铅压电体之外,这项新技术的研究还将增强科学界对固体材料中机电相互作用的更普遍的理解。新开发的器件将在传感、驱动和能量收集应用方面具有革命性意义。技术说明锆钛酸铅(PZT)或其他含铅压电材料广泛应用于精密传感器、光学致动器、声学发射器和接收器、能量收集器和精密定位设备。尽管存在重大的环境问题,但仍然没有PZT的良好替代品。在这个项目中,我们将利用一个新观察到的现象,空间电荷诱导的挠曲电,以创建一个高性能的替代PZT换能器。挠曲电性是指介电材料响应于应变梯度的电极化。最近已经观察到具有绝缘界面(即,空间电荷材料)表现出增强的挠曲电性。在这个项目中,研究小组将制造纳米结构的硅金字塔阵列,以创建和研究空间电荷诱导的挠曲电换能器。在制造工作的同时,研究人员将创建一个计算框架,用于模拟应变梯度、电场和移动的电荷载流子扩散之间的相互作用。这种计算框架将使详细的调查机制驱动空间电荷flexoelectricity,并允许优化的换能器。这种换能器可以具有比现有技术的微尺度压电材料高一个数量级的有效压电系数。由于它们是由硅制成的,因此它们满足了对高性能压电换能器的无毒、环保替代品的需求。空间电荷感应挠曲电传感器将为广泛的智能材料应用带来变革。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shad Roundy其他文献

Preface for the Special Issue of Energy Harvesting
Cutaneous Leishmaniasis of the Lower Lip in a United States Soldier
  • DOI:
    10.1016/j.joms.2007.12.045
  • 发表时间:
    2008-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shad Roundy;Jeffrey Almony;Theodore Zislis
  • 通讯作者:
    Theodore Zislis

Shad Roundy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shad Roundy', 18)}}的其他基金

U.S.-Ireland R&D Partnership: Highly efficient magnetoelectric nano-antenna arrays with wide operational bandwidth
美国-爱尔兰 R
  • 批准号:
    2320320
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CAREER: Powering Micro Scale Biomedical Implants through Controlled Low Frequency Magnetic Fields and Multiferroic Transducers
职业:通过受控低频磁场和多铁性换能器为微型生物医学植入物提供动力
  • 批准号:
    1651438
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Enabling Millimeter Scale Deeply Implanted Glucose Sensors through Ultrasonic Power Transfer and a Novel Glucose Sensing Mechanism
通过超声波功率传输和新型葡萄糖传感机制实现毫米级深度植入葡萄糖传感器
  • 批准号:
    1408265
  • 财政年份:
    2014
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
BRIGE: Adaptive Vibrational Energy Harvesting Systems through Semi-Passive Control of Nonlinear Oscillators
BRIGE:通过非线性振荡器半被动控制的自适应振动能量收集系统
  • 批准号:
    1342070
  • 财政年份:
    2013
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Set in stone? 'Desired whiteness' and the urban space: A collaborative research in (post) colonial Chile.
一成不变的?
  • 批准号:
    ES/X006867/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Research Grant
Collaborative Research: CyberTraining: Pilot: Cyberinfrastructure-Enabled Machine Learning for Understanding and Forecasting Space Weather
合作研究:网络培训:试点:网络基础设施支持的机器学习用于理解和预测空间天气
  • 批准号:
    2320148
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: IIBR: Innovation: Bioinformatics: Linking Chemical and Biological Space: Deep Learning and Experimentation for Property-Controlled Molecule Generation
合作研究:IIBR:创新:生物信息学:连接化学和生物空间:属性控制分子生成的深度学习和实验
  • 批准号:
    2318829
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: MUCUS: Measuring and Understanding the Cassiopea Use of Space
合作研究:MUCUS:测量和理解仙后座对空间的利用
  • 批准号:
    2227068
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: CCRI: New: Distributed Space and Terrestrial Networking Infrastructure for Multi-Constellation Coexistence
合作研究:研究基础设施:CCRI:新:用于多星座共存的分布式空间和地面网络基础设施
  • 批准号:
    2235140
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: The developmental course of cerebral lateralization for space and language
合作研究:大脑空间和语言偏侧化的发展过程
  • 批准号:
    2318609
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: The developmental course of cerebral lateralization for space and language
合作研究:大脑空间和语言偏侧化的发展过程
  • 批准号:
    2318608
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Competition for acoustic space as a driver of species diversity in vibrationally-signaling insects
合作研究:声音空间的竞争作为振动信号昆虫物种多样性的驱动因素
  • 批准号:
    2313964
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Charge-density based ML framework for efficient exploration and property predictions in the large phase space of concentrated materials
合作研究:CDS
  • 批准号:
    2302763
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了