CAREER: Powering Micro Scale Biomedical Implants through Controlled Low Frequency Magnetic Fields and Multiferroic Transducers

职业:通过受控低频磁场和多铁性换能器为微型生物医学植入物提供动力

基本信息

  • 批准号:
    1651438
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-02-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

Biomedical implants hold the promise of dramatically improving health and well-being by, for example, enabling people to pro-actively monitor health through real-time tracking of internal body chemistry (e.g. pH, glucose, lactate, tissue oxygen), treat diseases through targeted and tailored drug delivery, treat neural disorders through neural prostheses, etc. However, this vision is only possible if implants become much smaller with longer lifetimes. The current state of the art in integrated circuit and micro-sensor design and manufacturing could enable cubic millimeter sized implants that would greatly reduce trauma to the patient and improve continuous health monitoring. However, power systems have lagged behind and become a barrier to implant miniaturization. Very small batteries would quickly become depleted and then the entire implant would have to be surgically replaced. The goal of this project is to overcome this power problem by wirelessly transmitting power to the biomedical implants using low frequency magnetic fields that easily penetrate the human body. These magnetic fields will excite a magnetoelectric power receiver that will be part of the implant. The magnetoelectric receiver will convert the magnetic fields to electricity which will then be properly conditioned to power the implant. The Principle Investigator (PI) and affiliated researchers will explore two competing types of magnetoelectric devices and characterize them especially in terms of uncertainties related to the position and alignment of the implant and associated power receiver. New fabrication processes will be developed that enable micro-scale magnetoelectric devices to generate more power, thus enabling further miniaturization for biomedical implants. In addition to enabling the miniaturization of implants, the work to be accomplished by this project could have broader benefits for the state of the art in both sensing and wireless power transfer.The goal of this project is to explore the use of low frequency magnetic fields coupled with magnetoelectric power receivers to transmit power to biomedical implants. The target goal is to safely supply 100 microwatts per cubic millimeter, which would enable a wide range of implanted sensors and therapeutic devices. Low frequency magnetic fields are attractive because of their very low absorption in human tissue and encapsulating structures. Two classes of magnetoelectric devices will be investigated: laminates of magnetostrictive and piezoelectric material, and jointly fabricated permanent magnet / piezoelectric structures. The two approaches will be compared given alignment and orientation uncertainties and issues associated with human tissue interaction. Specifically, researchers will characterize the surrounding tissue's role in degrading the quality factor of the resonant magnetoelectric power receivers. The key relationships for power generation by this method as well as performance limits will be elucidated and experimentally validated, which will serve as a basis for system design. A new microfabrication process will be developed to enable high power transducers through the use of much thicker active materials (i.e. piezoelectric and magnetostrictive). Finally, a system to control the DC voltage used by the implant from the external transmitter will be developed and validated to remove the need for large onboard passive components associated with traditional power electronics. The efficacy of the external control method will be fully characterized with respect to stability of the DC voltage and robustness to system uncertainties. The results of this research will establish the basis for much smaller, more ubiquitous biomedical implants by overcoming the issue of delivering power at sufficient densities.
生物医学植入物有望大幅改善健康和福祉,例如,使人们能够通过实时跟踪体内化学物质来主动监测健康状况(例如pH、葡萄糖、乳酸盐、组织氧),通过靶向和定制的药物递送治疗疾病,通过神经假体治疗神经障碍等。然而,只有当植入物变得更小、寿命更长时,这一愿景才有可能实现。 集成电路和微传感器设计和制造的当前技术水平可以实现立方毫米大小的植入物,这将大大减少对患者的创伤并改善连续的健康监测。然而,电源系统已经落后,并成为植入物小型化的障碍。非常小的电池会很快耗尽,然后整个植入物将不得不通过手术更换。该项目的目标是通过使用容易穿透人体的低频磁场将电力无线传输到生物医学植入物来克服这种电力问题。这些磁场将激发磁电功率接收器,该接收器将成为植入物的一部分。 磁电接收器将磁场转换为电能,然后经过适当调节为植入物供电。 主要研究者(PI)和附属研究人员将探索两种相互竞争的磁电设备,并对其进行表征,特别是在与植入物和相关功率接收器的位置和对准相关的不确定性方面。 将开发新的制造工艺,使微型磁电装置能够产生更多的功率,从而使生物医学植入物进一步小型化。 除了使植入物的小型化,该项目所完成的工作可能会有更广泛的利益,为国家的最先进的传感和无线电力transfer.The项目的目标是探索使用低频磁场耦合磁电功率接收器传输电力到生物医学植入物。目标是安全地提供每立方毫米100微瓦,这将使广泛的植入式传感器和治疗设备成为可能。 低频磁场是有吸引力的,因为它们在人体组织和封装结构中的吸收非常低。两类磁电器件将被研究:磁致伸缩和压电材料的层压材料,和联合制造的永磁/压电结构。这两种方法将进行比较给定的对齐和方向的不确定性和问题与人体组织的相互作用。具体来说,研究人员将描述周围组织在降低谐振磁电功率接收器的品质因数方面的作用。 通过这种方法发电的关键关系以及性能限制将被阐明和实验验证,这将作为系统设计的基础。将开发一种新的微加工工艺,通过使用厚得多的活性材料(即压电和磁致伸缩材料)来实现高功率换能器。最后,将开发并验证一种用于控制植入物从外部发射器使用的直流电压的系统,以消除对与传统电力电子设备相关的大型板载无源组件的需求。外部控制方法的有效性将充分体现在直流电压的稳定性和对系统不确定性的鲁棒性方面。这项研究的结果将为更小,更普遍的生物医学植入物奠定基础,克服在足够的密度下提供功率的问题。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Energy harvesting and wireless power transfer in a unified system for wearable devices
可穿戴设备统一系统中的能量收集和无线功率传输
Design, Modeling, and Analysis of Inductive Resonant Coupling Wireless Power Transfer for Micro Aerial Vehicles (MAVs)
Experimentally validated model and power optimization of a magnetoelectric wireless power transfer system in free-free configuration
  • DOI:
    10.1088/1361-665x/ab90a2
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    B. Truong;S. Roundy
  • 通讯作者:
    B. Truong;S. Roundy
A review of wireless power transfer using magnetoelectric structures
  • DOI:
    10.1088/1361-665x/ac9166
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Orpita Saha;B. Truong;S. Roundy
  • 通讯作者:
    Orpita Saha;B. Truong;S. Roundy
Experiments on a wireless power transfer system for wearable device with sol-gel thin-film PZT
溶胶-凝胶薄膜PZT可穿戴设备无线电力传输系统实验
  • DOI:
    10.1088/1742-6596/1407/1/012063
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Truong, Binh Duc;Wang, Dixiong;Xue, Tiancheng;Trolier-McKinstry, Susan;Roundy, Shad
  • 通讯作者:
    Roundy, Shad
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shad Roundy其他文献

Preface for the Special Issue of Energy Harvesting
Cutaneous Leishmaniasis of the Lower Lip in a United States Soldier
  • DOI:
    10.1016/j.joms.2007.12.045
  • 发表时间:
    2008-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Shad Roundy;Jeffrey Almony;Theodore Zislis
  • 通讯作者:
    Theodore Zislis

Shad Roundy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shad Roundy', 18)}}的其他基金

U.S.-Ireland R&D Partnership: Highly efficient magnetoelectric nano-antenna arrays with wide operational bandwidth
美国-爱尔兰 R
  • 批准号:
    2320320
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Space Charge Induced Flexoelectric (SCIF) Transducers: A New Technology to Eliminate the Environmental Cost of Leaded Piezoelectric Transducers
合作研究:空间电荷感应柔性 (SCIF) 传感器:消除含铅压电传感器环境成本的新技术
  • 批准号:
    2247453
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Enabling Millimeter Scale Deeply Implanted Glucose Sensors through Ultrasonic Power Transfer and a Novel Glucose Sensing Mechanism
通过超声波功率传输和新型葡萄糖传感机制实现毫米级深度植入葡萄糖传感器
  • 批准号:
    1408265
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
BRIGE: Adaptive Vibrational Energy Harvesting Systems through Semi-Passive Control of Nonlinear Oscillators
BRIGE:通过非线性振荡器半被动控制的自适应振动能量收集系统
  • 批准号:
    1342070
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
  • 批准号:
    10099896
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
Revolutionizing Seamless Precipitation Forecast: Machine Learning-Driven Assimilation of Satellite Precipitation Observations in NICAM-LETKF for Powering Global Diurnal and Heavy Rainfall Predictions
彻底改变无缝降水预报:NICAM-LETKF 中机器学习驱动的卫星降水观测同化,为全球昼夜和强降雨预测提供支持
  • 批准号:
    24K17129
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Powering the Future: Revolutionising Access and Efficiency through Integrated and Sustainable Energy Solutions
为未来提供动力:通过综合和可持续能源解决方案彻底改变能源获取和效率
  • 批准号:
    10086733
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
ESCALATE - Powering European Union Net Zero Future by Escalating Zero Emission HDVs and Logistic Intelligence
ESCALATE - 通过升级零排放 HDV 和物流智能,为欧盟净零未来提供动力
  • 批准号:
    10063997
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    EU-Funded
Powering EU Net Zero Future by Escalating Zero Emission HDVs and Logistic Intelligence
通过升级零排放 HDV 和物流智能,为欧盟净零未来提供动力
  • 批准号:
    10059719
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    EU-Funded
Cambridge Astronomical Survey Unit (CASU) (2023-2026): Powering Next Generation Survey Analysis and Processing
剑桥天文测量单位 (CASU)(2023-2026):为下一代测量分析和处理提供动力
  • 批准号:
    ST/X001857/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Powering Wales Renewably
为威尔士提供可再生能源
  • 批准号:
    10060474
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Feasibility Studies
REMEDY Plus: Adding automation and powering predictions for sustainable production
REMEDY Plus:增加自动化并支持可持续生产的预测
  • 批准号:
    10072982
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
Planning: PREC: Powering the Valley: Electrifying Chemistry at UC Merced
规划:PREC:为硅谷提供动力:加州大学默塞德分校的电气化化学
  • 批准号:
    2334729
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Powering Next Generation Wearable Electronics: Moisture Electric Generator
为下一代可穿戴电子产品提供动力:湿气发电机
  • 批准号:
    LP210200495
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Linkage Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了