Multi-Dimensional Problems For Systems Of Conservation Laws
守恒定律体系的多维问题
基本信息
- 批准号:1408839
- 负责人:
- 金额:$ 17.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fluid free boundary problems arise in many physical, medical, and engineering models. In contrast with fixed boundaries, free boundaries are determined by the dynamics of the problem itself, a typical toy example being the boundary of a piece of ice melting in a glass of water. Problems of fluid-vacuum interfaces arise in the study of dynamics of boundaries of stars in astrophysics or in multi-phase flows. In multi-phase fluids (like blood) fluid-fluid interfaces problems arise. Frequently they involve the study of fluid-deformable structure interfaces such as in cell deformation. Physical vacuum is a natural medium (or rather the lack of any medium) where fluids may spread, such as in the boundary motion of gaseous stars, or propagation of the interface between the gas or liquid and vacuum in flows through porous media. This research project deals with vacuum free boundary problems for some systems of conservation laws in multi-dimensions arising in fluid dynamics and astrophysics. Some new analytic and geometric methods will be developed in this project to achieve the following goals: 1) to establish the long time well-posedness theory and understand long time dynamics for the vacuum free boundary problems for the three spatial dimensional Euler-Poisson and Navier-Stokes-Poisson equations of gaseous stars, capturing the physical vacuum singularity, 2) to establish the vanishing viscosity limit theory for the vacuum free boundary problems for the three spatial dimensional Navier-Stokes-Poisson equations of gaseous stars, capturing the physical vacuum singularity, 3) to elucidate the role of the heat conductivity to the dynamics of physical vacuum boundary of gaseous stars, 4) to establish the long time well-posedness theory for solutions to the vacuum free boundary problem for the three spatial dimensional compressible Euler equations with damping and understand the interface behavior of solutions related to the celebrated Barenblatt self-similar solutions to porous media equations. New ideas and techniques to be developed in this project will contribute to a general theory of degenerate hyperbolic, coupled hyperbolic-parabolic and hyperbolic-elliptic free boundary problems. This project will also provide training opportunities to some graduate and undergraduate students in applied mathematics.
流体自由边界问题出现在许多物理、医学和工程模型中。与固定边界相反,自由边界由问题本身的动力学决定,一个典型的玩具例子是一块冰在一杯水中融化的边界。流体-真空界面问题是天体物理学中恒星边界动力学研究或多相流研究中的一个重要问题。 在多相流体(如血液)中,出现流体-流体界面问题。它们经常涉及流体变形结构界面的研究,如细胞变形。 物理真空是一种自然的介质(或者更确切地说,没有任何介质),流体可以在其中扩散,例如在气态恒星的边界运动中,或者在气体或液体与真空之间的界面通过多孔介质流动的传播中。本研究计画主要探讨流体力学与天体物理学中多维守恒定律系统的真空自由边界问题。本项目将开发一些新的分析和几何方法,以实现以下目标:1)建立三维气体星Euler-Poisson方程和Navier-Stokes-Poisson方程真空自由边界问题的长时间适定性理论,理解真空自由边界问题的长时间动力学,捕捉物理真空奇异性,2)建立三维气体星Navier-Stokes-Poisson方程真空自由边界问题的消失粘性极限理论,捕捉物理真空奇异性,3)阐明热传导对气态星物理真空边界动力学的作用,4)建立长期良好的三维可压缩欧拉方程真空自由边界问题的定态理论,并了解解决方案有关的著名巴伦布拉特自相似解决方案的多孔介质方程。新的思想和技术将在这个项目中开发将有助于退化双曲,耦合双曲抛物和双曲椭圆自由边界问题的一般理论。该项目还将为一些应用数学研究生和本科生提供培训机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Der-Chen Chang其他文献
Corner Boundary Value Problems
- DOI:
10.1007/s11785-014-0424-9 - 发表时间:
2014-11-22 - 期刊:
- 影响因子:0.800
- 作者:
Der-Chen Chang;Tao Qian;Bert-Wolfgang Schulze - 通讯作者:
Bert-Wolfgang Schulze
Pompeiu Problem on Product of Heisenberg Groups
- DOI:
10.1007/s11785-010-0049-6 - 发表时间:
2010-03-02 - 期刊:
- 影响因子:0.800
- 作者:
Der-Chen Chang;Wayne Eby - 通讯作者:
Wayne Eby
Volterra operators in the edge-calculus
- DOI:
10.1007/s13324-018-0238-4 - 发表时间:
2018-06-19 - 期刊:
- 影响因子:1.600
- 作者:
Der-Chen Chang;M. Hedayat Mahmoudi;Bert-Wolfgang Schulze - 通讯作者:
Bert-Wolfgang Schulze
勝見勝のデザイン教育へのまなざし-昭和30年代の普通教育への言説より
克己胜的设计教育观——来自20世纪50年代通识教育的论述
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Ovidiu Calin;Der-Chen Chang;Kenro Furutani;Chisato Iwasaki;T. Hattori-A. Kasue;新関伸也 - 通讯作者:
新関伸也
On type III1 factors arising as free products, Math
关于作为免费产品产生的 III1 类因素,数学
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Ovidiu Calin;Der-Chen Chang;Kenro Furutani;Chisato Iwasaki;Y. Ueda - 通讯作者:
Y. Ueda
Der-Chen Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Der-Chen Chang', 18)}}的其他基金
International Conference on Several Complex Variables and Complex Geometry
多复变量与复几何国际会议
- 批准号:
1203845 - 财政年份:2012
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9206185 - 财政年份:1992
- 资助金额:
$ 17.81万 - 项目类别:
Fellowship Award
Some Fourier Analysis Problems Related to Several Complex Variables
与多个复变量相关的一些傅立叶分析问题
- 批准号:
9000968 - 财政年份:1990
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Mathematical problems in application of multi-dimensional multiwavelet analysis
多维多小波分析应用中的数学问题
- 批准号:
17K05298 - 财政年份:2017
- 资助金额:
$ 17.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-dimensional Security Problems of Vulnerable State - Haiti: Towards a Recovery from the Grate Earthquake and the Building of a Resilient State
脆弱国家的多维安全问题——海地:从大地震中恢复并建设有复原力的国家
- 批准号:
15K01889 - 财政年份:2015
- 资助金额:
$ 17.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regression trees for some problems with multi-dimensional data
多维数据的一些问题的回归树
- 批准号:
1305725 - 财政年份:2013
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
Computation of Large-Scale, Multi-Dimensional Sparse Optimization Problems
大规模、多维稀疏优化问题的计算
- 批准号:
1317602 - 财政年份:2013
- 资助金额:
$ 17.81万 - 项目类别:
Continuing Grant
Almost periodic and related multi-dimensional spectral problems
几乎周期性和相关的多维谱问题
- 批准号:
EP/J016829/1 - 财政年份:2012
- 资助金额:
$ 17.81万 - 项目类别:
Research Grant
Multi-Wavelength Sized Finite Elements for Three Dimensional Elastic Wave Problems
三维弹性波问题的多波长有限元
- 批准号:
EP/I018042/1 - 财政年份:2011
- 资助金额:
$ 17.81万 - 项目类别:
Research Grant
Tensor methods in multi-dimensional spectral problems with particular application in electronic structure calculations
多维谱问题中的张量方法,特别适用于电子结构计算
- 批准号:
79050120 - 财政年份:2008
- 资助金额:
$ 17.81万 - 项目类别:
Priority Programmes
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
- 批准号:
0244257 - 财政年份:2003
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
- 批准号:
0243622 - 财政年份:2003
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
- 批准号:
0244383 - 财政年份:2003
- 资助金额:
$ 17.81万 - 项目类别:
Standard Grant