Tensor methods in multi-dimensional spectral problems with particular application in electronic structure calculations
多维谱问题中的张量方法,特别适用于电子结构计算
基本信息
- 批准号:79050120
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2008
- 资助国家:德国
- 起止时间:2007-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many problems from modern physics and other fields are posed on high-dimensional tensor spaces in a natural way. Numerical approximation of solutions suffers from the curse of dimensionality, i.e. the computational complexity scales exponentially with the dimension of the space. Their numerical treatment therefore always involves methods of approximation by data-sparse representation ontensor spaces. There has very recently been remarkable progress in tensor product approximations. Newly introduced multiscale tensorisation techniques are provided by novel tensor formats. We aim to continue and enhance these developments and to use it for the design and critical assessment of algorithms for the new tensor formats treating high dimensional spectral problems. A particular emphasis is on the systematic examination of the potential which these methods may have in connection with various well-known algorithms used for the treatment of the electronic Schrödinger equation. In particular, our goal is to combine those novel techniques with the requirements and existing wellestablished algorithms for the electronic Schrödinger equation, in particular with one-particle models as the Hartree-Fock and Kohn-Sham method. In this respect, the proposal aims at the continuation of our project within the SPP 1324, concerned with the development of novel, mathematically sound tensor product methods for the numerical treatment of high-dimensional eigenvalue problems.
现代物理学和其他领域的许多问题都是以自然的方式在高维张量空间上提出的。解的数值近似会受到维数灾难的影响,即计算复杂性随着空间维数呈指数级增长。因此,它们的数值处理总是涉及通过张量空间上的数据稀疏表示来近似的方法。最近在张量积近似方面取得了显着的进展。新引入的多尺度张量化技术由新颖的张量格式提供。我们的目标是继续并加强这些开发,并将其用于处理高维谱问题的新张量格式的算法的设计和关键评估。特别强调的是对这些方法可能与用于处理电子薛定谔方程的各种众所周知的算法相关的潜力进行系统检查。特别是,我们的目标是将这些新技术与电子薛定谔方程的要求和现有的完善算法相结合,特别是与 Hartree-Fock 和 Kohn-Sham 方法等单粒子模型相结合。在这方面,该提案旨在继续我们在 SPP 1324 内的项目,涉及开发新颖的、数学上合理的张量积方法,用于高维特征值问题的数值处理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Wolfgang Hackbusch其他文献
Professor Dr. Wolfgang Hackbusch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Wolfgang Hackbusch', 18)}}的其他基金
Operator Kalkül von Dichte-Matrizen und speziellen Wavelet-Darstellungen
密度矩阵算子演算和特殊小波表示
- 批准号:
5412686 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Priority Programmes
Adaptive solution of coupled cluster equation and tensor product approximation of two-electron integrals
耦合簇方程的自适应解与二电子积分张量积近似
- 批准号:
5412684 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Priority Programmes
Approximation von Vielteilchen-Wellenfunktionen auf dünnen Gittern
薄网格上多体波函数的逼近
- 批准号:
5275972 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Priority Programmes
Composed finite elements for approximating partial differential equations with jumping coefficients
用跳跃系数逼近偏微分方程的组合有限元
- 批准号:
5276732 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Functional characterization of schizophrenia rare variants using genetically engineered human iPSCs
使用基因工程人类 iPSC 进行精神分裂症罕见变异的功能表征
- 批准号:
10554598 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Functional plasticity in retinal degenerative disease
视网膜退行性疾病的功能可塑性
- 批准号:
10637293 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
- 批准号:
10696649 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Planning Study for the Development of Sigma 2 ligands as Analgesics
Sigma 2 配体镇痛药开发规划研究
- 批准号:
10641500 - 财政年份:2023
- 资助金额:
-- - 项目类别:
High-throughput in vivo and in vitro functional and multi-omics screens of neuropsychiatric and neurodevelopmental disorder risk genes
神经精神和神经发育障碍风险基因的高通量体内和体外功能和多组学筛选
- 批准号:
10643398 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Feasibility Trial of a Novel Integrated Mindfulness and Acupuncture Program to Improve Outcomes after Spine Surgery (I-MASS)
旨在改善脊柱手术后效果的新型综合正念和针灸计划的可行性试验(I-MASS)
- 批准号:
10649741 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Multi-modal insights of spatially distributed cells with associations of diseases and drug response
空间分布细胞与疾病和药物反应关联的多模式见解
- 批准号:
10714602 - 财政年份:2023
- 资助金额:
-- - 项目类别: