Development of Multiferroic Nanocomposites for 3D Electroactive Cell Scaffolds

用于 3D 电活性电池支架的多铁纳米复合材料的开发

基本信息

  • 批准号:
    1410564
  • 负责人:
  • 金额:
    $ 39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-15 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

Nontechnical: This award by the Biomaterials program in the Division of Materials Research to University of Florida is cofunded by the Nano- Biosensor program in the Division of Chemical, Bioengineering, Environmental, and Transport Systems (ENG). The goal of this project is to develop new types of materials that are capable of generating a local electric field in response to an applied magnetic field, which the human body is permeable to. Electric fields play a critical role in many of the body processes, ranging from the neural circuitry of our brains, to how one sees and hears among others. However, there is a lack of a non-invasive method in which one may apply electric fields remotely to the body. The main focus of this project is in developing novel methods to prepare new types of materials that are capable of generating a local electric field in response to an applied external magnetic field, and these materials will be incorporated into scaffolds for neural tissue engineering. The technological broader impact of the project is in developing novel materials that could lead to an entirely new way of treating nervous system diseases, tissue regeneration and repair. In addition to the technical impact of this program, outreach events will be developed to promote the involvement of women in science, with a range of approaches that target students from elementary to graduate levels. In terms of diversity, the Principle Investigators will enhance the recruitment and retention of underrepresented minority students from the undergraduate degree through to academic careers. These activities will be carried out in collaboration with Southeast Alliance for Graduate Education and the Professoriate program on the campus.Technical: Electric fields play an important role in a wide range of biological processes, including prenatal development, cell signaling, nerve sprouting, wound healing, etc. As a result, a range of devices have been developed that are capable of delivering electric fields to the human body. However, at present, it is not possible to apply electric fields to interior parts of the body in a non-invasive manner. With this award, the researchers plan to overcome this limitation with the development of a 3-D multiferroic nanocomposite-based cell scaffold. Multiferroic composite materials are materials that couple multiple types of ferroic ordering, which leads to new types of ordering including the magnetoelectric effect. For example, magnetoelectric multiferroic materials are capable of generating an electric field in response to an applied magnetic field, which the body is permeable to. The primary goal of this project is to synthesize biocompatible multiferroic nanomaterials and to incorporate them into biopolymer hydrogels. After developing biocompatible electroactive composite scaffolds, the researchers will study relationships between electric fields and the fate of cells. With the incorporation of multiferroic materials in a biopolymer scaffold, this project seeks to assemble a cell scaffold material that fully mimics the chemical, topographical, mechanical, and electrical properties of native tissue. The proposed research is multidiscliplinary and involves collaboration among faculty members in different departments such as Chemistry, Biomedical Engineering, and Materials Science & Engineering departments in the Campus. Through this collaboration, students will be exposed to creative thinking and cooperative co-advising of research projects that transcend research groups and disciplines.
非技术性:生物材料计划在佛罗里达大学材料研究部的奖项由化学,生物工程,环境和运输系统(ENG)的纳米生物传感器计划(ENG)授予。该项目的目的是开发能够生成局部电场的新型材料,以响应人体可渗透的磁场。电场在许多身体过程中起着至关重要的作用,从大脑的神经回路到人们的看法和听到的方式。但是,缺乏一种非侵入性方法,在这种方法中,人们可以将电场远程应用到人体上。该项目的主要重点是开发新的方法,以准备能够响应应用的外部磁场而产生局部电场的新型材料,这些材料将被纳入用于神经组织工程的脚手架中。 该项目的技术更广泛的影响是开发新型材料,这可能导致一种全新的治疗神经系统疾病,组织再生和修复的方式。 除了该计划的技术影响外,还将开发推广活动,以促进妇女参与科学,并采用各种方法,这些方法针对从小学到研究生水平的学生。在多样性方面,主要研究人员将增强从本科学位到学术职业的代表性不足的少数族裔学生的招聘和保留。这些活动将与东南研究生教育联盟和校园教授计划合作进行。技术:电场在广泛的生物过程中起着重要作用,包括产前发育,细胞信号,神经发芽,伤口愈合等。结果,已经开发了一系列设备,能够提供电气领域的电场。 但是,目前,不可能以非侵入性方式将电场应用于人体的内部部位。通过此奖项,研究人员计划通过开发3-D多型纳米复合材料的细胞支架来克服这一局限性。 多效复合材料是将多种类型的铁体订购材料融合在一起的材料,从而导致新的订购类型,包括磁电效应。例如,磁性多表色材料能够响应人体可渗透的磁场产生电场。 该项目的主要目标是合成生物相容性的多种纳米材料,并将其掺入生物聚合物水凝胶中。在开发了生物相容性的电活性复合支架后,研究人员将研究电场与细胞命运之间的关系。 通过将多效材料掺入生物聚合物支架中,该项目试图组装一种细胞支架材料,该材料充分模仿天然组织的化学,地形,机械和电性能。拟议的研究是多概学的,涉及不同部门的教职员工之间的合作,例如化学,生物医学工程和校园的材料科学与工程部门。通过这种合作,学生将接触到超越研究小组和学科的研究项目的创造性思维和合作共同审议。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Andrew其他文献

Jennifer Andrew的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Andrew', 18)}}的其他基金

The Emergence of Ferroic Phenomena and Size-Effects in Fluorite-Based Nanoparticles
萤石基纳米粒子中铁现象的出现和尺寸效应
  • 批准号:
    1832733
  • 财政年份:
    2018
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
SNM: Large-area Manufacturing of Integrated Devices with Nanocomposite Magnetic Cores
SNM:纳米复合磁芯集成器件的大面积制造
  • 批准号:
    1727930
  • 财政年份:
    2017
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
Collaborative Research: Processing and Assembly of Devices with Tailored Magnetic Properties
合作研究:具有定制磁性能的器件的加工和组装
  • 批准号:
    1436623
  • 财政年份:
    2014
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
CAREER: Structure-property Relationships Arising From Interfacial Coupling in Bi-phasic Ceramic Nanocomposites
职业:双相陶瓷纳米复合材料中界面耦合产生的结构-性能关系
  • 批准号:
    1150665
  • 财政年份:
    2012
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant

相似国自然基金

非晶过渡金属多硫化物正极材料穿梭效应消除机制及其构效关系
  • 批准号:
    22309087
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
规律性铁-多酚配位化合物的构建及其与磁共振弛豫性能的构-效关系研究
  • 批准号:
    22377078
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
“持续化学发光与多效抗菌”复合探针的构筑及其关节假体周围感染细菌的检测与灭活研究
  • 批准号:
    82302646
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小麦多效性株高QTLQPh.cib-6A的遗传效应解析及图位克隆
  • 批准号:
    32301790
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多压共轨液电双源融合系统高能效驱动重载装备的设计理论与方法
  • 批准号:
    52305068
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FuSe: Ultra-Low-Energy Logic-in-Memory Computing using Multiferroic Spintronics
FuSe:使用多铁自旋电子学的超低能耗内存逻辑计算
  • 批准号:
    2329111
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Continuing Grant
Development of Low Power Consumption Multiferroic Memory using Experimental and Computational Approaches
使用实验和计算方法开发低功耗多铁存储器
  • 批准号:
    23KJ0919
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of room temperature multiferroic properties of oxyfluoride thin films
氟氧化物薄膜室温多铁性的研究进展
  • 批准号:
    23H01846
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Heteromolecular Interface Design for Better Multiferroic Molecular Spintronics
更好的多铁性分子自旋电子学的异分子界面设计
  • 批准号:
    2317464
  • 财政年份:
    2023
  • 资助金额:
    $ 39万
  • 项目类别:
    Standard Grant
From Multiferroic Composite Oxides to Composite Thin Films Fabrication
从多铁复合氧化物到复合薄膜制造
  • 批准号:
    RGPIN-2018-04438
  • 财政年份:
    2022
  • 资助金额:
    $ 39万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了