Design of Tough Resilient Gels Using Adhesive Rigid-Rod Polymers

使用粘性刚性棒聚合物设计坚韧的弹性凝胶

基本信息

  • 批准号:
    1410985
  • 负责人:
  • 金额:
    $ 38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-15 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

Non-technical Abstract:This project will determine the optimal design parameters for strong, resilient polymeric materials to improve their use in a wide range of applications including as smart structural materials that can heal after failure, as tissue replacements for damaged joints, and as scaffolds for the large-scale manufacture of stem cell cultures. Our study takes advantage of the unique features of protein-based polymers to create materials with enhanced toughness and resiliency. Our results will provide not only optimization criteria, but will establish the relationships between molecular structure and bulk, macroscopic material response. Building such connections between length scales is very important, and will enable other academic and industrial engineers to leverage our work to solve numerous problems in materials science. This study will engage graduate, undergraduate and community college students in materials research, while providing hands on training in state-of-the-art experimental and computational methods. The students and the PI will participate in community outreach events and visits to local elementary schools to advance a public understanding of cutting edge materials science.Technical Abstract:This project will enable the improved design of strong, resilient polymeric materials by establishing the relationships between structure and mechanics in adhesive rigid rod polymer networks. We use a model system made of filamentous cellular proteins called microtubules with chemical and mechanical properties we can tightly control. Experimentally, we apply local forces to such networks using focused electromagnetic fields to manipulate microscale particles and we relate particle displacement to understand the local mechanical properties of the gels. Unlike most synthetic systems, protein-based networks are very rigid allowing them to retain an intrinsic memory of their initial, unloaded state. Moreover, protein-based crosslinkers are labile: their bonds break under force but can reform when the force is removed. These unique features increase biomaterial toughness and resiliency, and allow such materials to 'heal', even when they are locally loaded to failure. Through experimentation and simulation, our work will establish the microscopic origins of material response, and will guide the development of bio-inspired materials that are durable, adaptive, and self-healing. Such materials could be used as artificial tissues or as smart structural materials where shock absorption under loading is required. This work will engage graduate, undergraduate and community college students in materials research. The students and the PI will participate in community outreach events at local elementary schools to advance a public understanding of cutting edge materials science and will share our results broadly through publications, conferences, and in-person visits to local schools.
非技术摘要:该项目将确定坚固、有弹性的聚合物材料的最佳设计参数,以提高它们在广泛应用中的用途,包括作为故障后可以愈合的智能结构材料、作为受损关节的组织替代物,以及作为大规模制造干细胞培养的支架。我们的研究利用基于蛋白质的聚合物的独特功能来创造具有增强韧性和弹性的材料。我们的结果不仅将提供优化标准,而且将建立分子结构与整体、宏观材料响应之间的关系。在长度尺度之间建立这样的联系是非常重要的,这将使其他学术和工业工程师能够利用我们的工作来解决材料科学中的许多问题。这项研究将吸引研究生、本科生和社区大学的学生从事材料研究,同时提供最先进的实验和计算方法的实践培训。学生和PI将参加社区外展活动和对当地小学的访问,以促进公众对尖端材料科学的了解。技术摘要:该项目将通过建立粘合刚性棒状聚合物网络中结构和力学之间的关系,改进高强度、有弹性的聚合物材料的设计。我们使用一种由丝状细胞蛋白组成的模型系统,称为微管,具有我们可以严格控制的化学和机械性能。在实验上,我们使用聚焦电磁场对这种网络施加局部力来操纵微尺度粒子,并将粒子位移联系起来,以了解凝胶的局部力学性质。与大多数合成系统不同,基于蛋白质的网络是非常僵硬的,允许它们保留对初始、未加载状态的内在记忆。此外,基于蛋白质的交联剂是不稳定的:它们的键在作用力下断裂,但当作用力解除时可以重新结合。这些独特的特性提高了生物材料的韧性和弹性,并允许此类材料即使在局部加载到失效时也能“愈合”。通过实验和模拟,我们的工作将建立材料响应的微观起源,并将指导开发耐用、自适应和自我修复的仿生材料。这种材料可以用作人造组织,也可以用作需要减震的智能结构材料。这项工作将吸引研究生、本科生和社区学院的学生从事材料研究。学生和PI将参加当地小学的社区外展活动,以促进公众对尖端材料科学的了解,并将通过出版物、会议和对当地学校的亲自访问来广泛分享我们的成果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Megan Valentine其他文献

Special Education Outcomes and Young Australian School Students: A Propensity Score Analysis Replication.
特殊教育成果和澳大利亚年轻学生:倾向得分分析复制。
Title: Implementation of Discourse Analysis in Aphasia: Investigating the Feasibility of a Knowledge-to-Action Intervention Short Title: Implementation of discourse analysis
标题:话语分析在失语症中的实施:调查知识到行动干预的可行性 简短标题:话语分析的实施
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lucy Bryant;A. Ferguson;Megan Valentine
  • 通讯作者:
    Megan Valentine
Volume 2 Issue 1 Complete
第 2 卷第 1 期已完成
The Short- to Medium-Term Predictive Validity of Static and Dynamic Risk-of-Violence Measures in Medium- to Low-Secure Forensic and Civil Inpatients
中低安全法医和民事住院患者中静态和动态暴力风险措施的中短期预测有效性
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Finch;D. G. Gilligan;S. Halpin;Megan Valentine
  • 通讯作者:
    Megan Valentine
Physiological Responses of Adults with Sensory Over-Responsiveness
感觉过度反应的成年人的生理反应

Megan Valentine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Megan Valentine', 18)}}的其他基金

Collaborative Research: DMREF: Living biotic-abiotic materials with temporally programmable actuation
合作研究:DMREF:具有临时可编程驱动的生物-非生物活性材料
  • 批准号:
    2118497
  • 财政年份:
    2021
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
NSF-BSF: Development of hydrogel materials for use in cellular force sensing
NSF-BSF:开发用于细胞力传感的水凝胶材料
  • 批准号:
    2004937
  • 财政年份:
    2020
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Fast-scanning Confocal Microscope to Advance Biophysics, Neuroscience and Bioengineering Research and Training
MRI:购买快速扫描共焦显微镜以推进生物物理学、神经科学和生物工程研究和培训
  • 批准号:
    1625770
  • 财政年份:
    2016
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
CAREER: An Integrated Approach to Neuron Mechanics: Deciphering the Functional, Mechanical, and Structural Interactions between Microtubules and Actin
职业:神经元力学的综合方法:破译微管和肌动蛋白之间的功能、机械和结构相互作用
  • 批准号:
    1254893
  • 财政年份:
    2013
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
Role of Motor/cargo Attachment Mechanics in Collective Kinesin Transport
马达/货物附着机制在集体驱动蛋白运输中的作用
  • 批准号:
    1329722
  • 财政年份:
    2013
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
REU Site: Internships in Nanosystems Science, Engineering and Technology (INSET)
REU 网站:纳米系统科学、工程和技术实习 (INSET)
  • 批准号:
    1062812
  • 财政年份:
    2011
  • 资助金额:
    $ 38万
  • 项目类别:
    Continuing Grant

相似国自然基金

拟南芥孢子体特异表达的TOUGH基因调控配子体发育的分子机理研究
  • 批准号:
    32170350
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
miRNA生物合成因子TOUGH调控拟南芥核糖体生物合成和rRNA前体转录后加工的机制研究
  • 批准号:
    31900932
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于TOUGH2与大气扩散耦合模式的低渗透油田CO2注气区域大气环境影响分析方法研究
  • 批准号:
    41373088
  • 批准年份:
    2013
  • 资助金额:
    95.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
  • 批准号:
    2339197
  • 财政年份:
    2024
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
NSF-SNSF: Crack Path Prediction and Control in Nonlinearly Viscoelastic Materials: in-silico to Experiments with Viscoelastic and Tough Hydrogels
NSF-SNSF:非线性粘弹性材料中的裂纹路径预测和控制:粘弹性和坚韧水凝胶的计算机实验
  • 批准号:
    2403592
  • 财政年份:
    2024
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
CAREER: Tough Architected Concrete Materials: Bio-inspired Design, Manufacturing, and Mechanics
职业:坚韧的建筑混凝土材料:仿生设计、制造和力学
  • 批准号:
    2238992
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
    Continuing Grant
Solar2Wave: Design of Floating Solar Farms to Overcome Tough Ocean Waves
Solar2Wave:克服汹涌海浪的浮动太阳能发电场设计
  • 批准号:
    10048187
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
    Feasibility Studies
AMCS – Development of a new, lightweight, ultra-tough advanced matrix composite material for EV and LiON battery armour
AMCS — 开发用于电动汽车和锂离子电池装甲的新型、轻质、超坚韧的先进基质复合材料
  • 批准号:
    10082802
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
    Collaborative R&D
Biomineral-inspired mechanically tough perovskite solar cells with enhanced stability
受生物矿物启发,机械坚韧的钙钛矿太阳能电池具有增强的稳定性
  • 批准号:
    EP/X012263/1
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
    Research Grant
Biomineral-inspired mechanically tough perovskite solar cells with enhanced stability
受生物矿物启发,机械坚韧的钙钛矿太阳能电池具有增强的稳定性
  • 批准号:
    EP/X012484/1
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
    Research Grant
Mechanistic Design and Understanding of Fully Polymeric Antifreezing and Tough Hydrogels
全聚合防冻剂和坚韧水凝胶的机理设计和理解
  • 批准号:
    2311985
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
    Standard Grant
Drawing on Forced Marriage: Teaching Tough Topics Through Comics
借鉴强迫婚姻:通过漫画教授棘手的话题
  • 批准号:
    AH/X004325/1
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
    Research Grant
Theoretical development of super-ductile, super-tough, and super-strong high entropy ceramics
超韧、超韧、超强高熵陶瓷理论发展
  • 批准号:
    22KF0241
  • 财政年份:
    2023
  • 资助金额:
    $ 38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了