Ultrathin Deformable Materials and Protective Coatings Bio-inspired by Scaled Skin

受鳞片皮肤启发的超薄可变形材料和防护涂层

基本信息

  • 批准号:
    1411320
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

Non-Technical: This award by the Biomaterials program in the Division of Materials Research to University of Colorado, Boulder, is co-funded by the Mechanics of Materials program in the Division of Civil, Mechanical, and Manufacturing Innovation (ENG). Natural and human-made materials are often designed to perform the same functions, for example for structural support, robustness, protection, or being lightweight. Nature is therefore a significant source of inspiration for new and alternative designs for engineered materials, even for cutting-edge technologies such as flexible/stretchable electronics. Scaled skins in nature have remarkable mechanical properties including being compliant, resistant to penetration, and lightweight, all of which is achieved within an ultrathin membrane structure. This project will study the mechanics in scales and scaled skins in order to design and microfabricate a new bio-inspired material that can serve as a deformable, damage resistant, and robust protective coating. The resulting artificial scaled skins will be ultrathin, lightweight, transparent, and robust to mechanical deformations (puncture, bending, stretching, and compression) making them attractive for a wide range of applications. As part of these efforts, remote interactive sessions with the scanning electron microscopy (SEM) facilities at the University of Colorado will be developed and will be implemented in the high schools of rural communities in western Colorado. Technical: The mechanical behavior of scaled skin makes it attractive for application as a protective coating on flexible and stretchable engineered materials, in which an 'engineered scaled skin' will be able to conformally cover the substrate throughout the applied deformations and provide resistance to puncture or excessive bending, twisting, or stretching. Modern designs and implementations of human-made scaled skins, although sharing some mechanisms and duplicating some performance features of natural materials, have not achieved a systematic biomimetic transfer-of-technology because of a limited understanding of the fundamental mechanics in such systems. The objective of this project is to design, fabricate, and characterize an engineered scaled skin material using an integrated set of experiments and novel multiscale computational methods. This project will lead to (i) design principles for artificial scaled skins with mechanics comparable to those observed in nature, (ii) microfabrication techniques to produce artificial scales and scaled skins from microscale structures, and (iii) direct measurements and computational modeling of the behavior of the artificial scaled skins in response to mechanical deformation. Artificial scaled skins will be uniquely positioned as an engineered material for coating and protecting flexible/stretchable electronic devices by providing enhanced mechanical properties, robustness and durability, and transparency, thus enabling application on specialized flexible electronics such as surface mounted tactile probes and implantable bio-sensors. These efforts provide a platform to attract and train engineers in the computational design of materials, microfabrication, and experimental/computational mechanics.
非技术:该奖项由科罗拉多大学博尔德分校材料研究部的生物材料项目颁发,由土木、机械和制造创新部(ENG)的材料力学项目共同资助。天然和人造材料通常被设计为执行相同的功能,例如结构支撑、坚固性、保护或轻质。因此,大自然是工程材料新设计和替代设计的重要灵感来源,甚至是柔性/可拉伸电子产品等尖端技术。 自然界中的鳞片状皮肤具有显著的机械性能,包括柔顺性、抗渗透性和轻质,所有这些都是在一个可折叠的膜结构中实现的。 该项目将研究鳞片和鳞片皮肤的力学,以设计和微制造一种新的生物启发材料,可以作为一种可变形,抗损伤和坚固的保护涂层。 所得到的人造鳞片皮肤将是光滑的、轻质的、透明的,并且对机械变形(穿刺、弯曲、拉伸和压缩)具有鲁棒性,使得它们对于广泛的应用具有吸引力。 作为这些努力的一部分,将开发与科罗拉多大学扫描电子显微镜(SEM)设施的远程互动课程,并将在科罗拉多西部农村社区的高中实施。 技术支持:鳞状皮肤的机械行为使其作为柔性和可拉伸的工程材料上的保护涂层的应用具有吸引力,其中“工程鳞状皮肤”将能够在整个施加的变形中保形地覆盖基底,并提供对穿刺或过度弯曲、扭曲或拉伸的抵抗。 人造鳞片皮肤的现代设计和实现,尽管共享一些机制并复制天然材料的一些性能特征,但由于对此类系统中的基本力学的理解有限,尚未实现系统的仿生技术转移。 本项目的目标是设计,制造和表征工程缩放皮肤材料使用一套完整的实验和新的多尺度计算方法。 该项目将导致(i)与在自然界中观察到的力学相当的人造鳞片皮肤的设计原则,(ii)从微尺度结构生产人造鳞片和鳞片皮肤的微制造技术,以及(iii)对人造鳞片皮肤响应机械变形的行为的直接测量和计算建模。 人造鳞片皮肤将被独特地定位为用于涂覆和保护柔性/可拉伸电子设备的工程材料,通过提供增强的机械性能、鲁棒性和耐久性以及透明度,从而能够应用于专用柔性电子设备,例如表面安装的触觉探针和植入式生物传感器。 这些努力提供了一个平台,以吸引和培训工程师在材料的计算设计,微细加工和实验/计算力学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Franck Vernerey其他文献

Analysis of Group of Fish Response to Startle Reaction
  • DOI:
    10.1007/s00332-022-09855-0
  • 发表时间:
    2022-10-08
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Violet Mwaffo;Franck Vernerey
  • 通讯作者:
    Franck Vernerey

Franck Vernerey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Franck Vernerey', 18)}}的其他基金

Mechanics of Active Slide-Ring Networks: from Molecular Motors to Molecular Machine
有源滑环网络的力学:从分子马达到分子机器
  • 批准号:
    2023179
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Transient Network Theory: Bridging Molecular Mechanisms to the Viscoelasticity of Soft Polymers
瞬态网络理论:将分子机制与软聚合物的粘弹性联系起来
  • 批准号:
    1761918
  • 财政年份:
    2018
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
CAREER: In Silico Tissue Engineering: An Active-Learning Computational Methodology to Guide the Design of Tissue Scaffolds
职业:计算机组织工程:指导组织支架设计的主动学习计算方法
  • 批准号:
    1350090
  • 财政年份:
    2014
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Multiscale Biomimetic Study of the Mechanics of Fish Scales
鱼鳞力学的多尺度仿生研究
  • 批准号:
    0927585
  • 财政年份:
    2009
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Experimental Study and Theoretical Modeling of High Performance Recycled Aggregate Concrete
高性能再生骨料混凝土的实验研究和理论建模
  • 批准号:
    0900607
  • 财政年份:
    2009
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant

相似海外基金

Development of stimuli deformable lipid/polymer hybrid nano-materials for drug delivery applications
开发用于药物输送应用的刺激可变形脂质/聚合物混合纳米材料
  • 批准号:
    RGPIN-2019-05979
  • 财政年份:
    2022
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a whole-body exposure reduction method using deformable neutron shielding materials for BNCT
开发用于 BNCT 的使用可变形中子屏蔽材料的全身暴露减少方法
  • 批准号:
    21K20521
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of stimuli deformable lipid/polymer hybrid nano-materials for drug delivery applications
开发用于药物输送应用的刺激可变形脂质/聚合物混合纳米材料
  • 批准号:
    RGPIN-2019-05979
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Grants Program - Individual
Development of stimuli deformable lipid/polymer hybrid nano-materials for drug delivery applications
开发用于药物输送应用的刺激可变形脂质/聚合物混合纳米材料
  • 批准号:
    RGPIN-2019-05979
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Grants Program - Individual
Data-Driven Modelling of Deformable Materials for Robotic Manipulation
用于机器人操作的可变形材料的数据驱动建模
  • 批准号:
    2427613
  • 财政年份:
    2020
  • 资助金额:
    $ 42万
  • 项目类别:
    Studentship
Development of stimuli deformable lipid/polymer hybrid nano-materials for drug delivery applications
开发用于药物输送应用的刺激可变形脂质/聚合物混合纳米材料
  • 批准号:
    RGPIN-2019-05979
  • 财政年份:
    2019
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical and Experimental Studies of Cell Reorganization on Deformable Materials
可变形材料细胞重组的理论与实验研究
  • 批准号:
    0854129
  • 财政年份:
    2009
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Multi-scale modeling of transport through deformable porous materials
可变形多孔材料传输的多尺度建模
  • 批准号:
    DP0988427
  • 财政年份:
    2009
  • 资助金额:
    $ 42万
  • 项目类别:
    Discovery Projects
An Optimization Framework for the Estimation of Material Properties of Deformable Materials from Volumetric Deformation Measurements
通过体积变形测量估计可变形材料的材料特性的优化框架
  • 批准号:
    0830554
  • 财政年份:
    2008
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Development of Damage-Free columns with using Plastic-Deformable Materials in the Plastic-Hine Region
在塑性区域使用塑性变形材料开发无损伤柱
  • 批准号:
    13450184
  • 财政年份:
    2001
  • 资助金额:
    $ 42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了