Transient Network Theory: Bridging Molecular Mechanisms to the Viscoelasticity of Soft Polymers

瞬态网络理论:将分子机制与软聚合物的粘弹性联系起来

基本信息

  • 批准号:
    1761918
  • 负责人:
  • 金额:
    $ 39.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

The ability to organize large populations of molecules into materials can open the door to making dynamic materials or soft machines, thus advancing the national health, prosperity, and welfare; and even securing the national defense by facilitating the emerging area of soft robotics. Such materials are often found in nature in the form of transient polymeric networks which are at the source of muscle contraction as well as self-healing and adaptation in biological tissues. Although similar molecular networks can be synthesized in the laboratory, their performance still lags far behind their biological counterparts; raising the need for a better theoretical understanding and experimental control. This project will provide a route to fundamentally understand how the organization and dynamics of such polymer networks can lead to a well-targeted emerging response. It will promote the progress of soft matter science by bridging the gap between our understanding of the behavior of a single molecule and that of an entire network, not only enabling a fundamental understanding of bio-polymers, but also in improving our ability to control synthetic materials. The project will also develop an educational program around the concept of "materials of the future and bio-inspiration" in high-schools, the enhancement of undergraduate curriculum, and dissemination of scientific knowledge through social media.From a fundamental viewpoint, this project will support the development of a transient network theory that will describe, in a statistical sense, the time evolution of a transient polymer network based on molecular processes such as chain detachment, reputation, or diffusion. Going beyond phenomenological viscoelastic models, key concepts in statistical mechanics will be used to obtain a clearer connection between transient molecular interactions between many polymer chains and the time-dependent response of the network. The project brings three key contributions: (a) a new fundamental understanding of the relation between molecular processes and rheology, elasticity and energy dissipation; (b) the ability to generate new hypotheses regarding dynamic polymers and explore their macroscopic outcome in terms of growth, fracture resistance, and self-healing, and (c) a new continuum framework to describe the extreme deformation of soft materials whose behavior lies between that of solids and fluids. A computational methodology based on finite elements will be introduced to solve the research theory and used to study and characterize the viscoelastic response of synthetic and biopolymers in terms of their inner structure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
将大量分子组织成材料的能力可以为制造动态材料或软机器打开大门,从而促进国家健康,繁荣和福利;甚至通过促进软机器人的新兴领域来确保国防。这种材料在自然界中通常以瞬时聚合物网络的形式存在,其是生物组织中肌肉收缩以及自我愈合和适应的来源。虽然类似的分子网络可以在实验室中合成,但它们的性能仍然远远落后于生物学上的同类,因此需要更好的理论理解和实验控制。该项目将提供一条路线,从根本上了解这种聚合物网络的组织和动力学如何导致有针对性的新兴反应。它将通过弥合我们对单个分子行为和整个网络行为的理解之间的差距,促进软物质科学的进步,不仅能够从根本上理解生物聚合物,而且还可以提高我们控制合成材料的能力。该项目还将围绕高中“未来材料和生物灵感”的概念,加强本科课程,通过社交媒体传播科学知识,开发教育计划。从根本上看,该项目将支持瞬态网络理论的开发,该理论将从统计意义上描述,基于分子过程(如链分离、信誉或扩散)的瞬态聚合物网络的时间演化。超越唯象粘弹性模型,统计力学中的关键概念将用于获得许多聚合物链之间的瞬态分子相互作用和网络的时间依赖性响应之间的更清晰的联系。该项目带来了三个关键贡献:(a)对分子过程与流变学、弹性和能量耗散之间的关系有了新的基本认识;(B)产生关于动态聚合物的新假设并探索它们在生长、抗断裂性和自修复方面的宏观结果的能力,(c)一个新的连续体框架来描述软材料的极端变形,其行为介于固体和流体之间。将引入基于有限元的计算方法来解决研究理论,并用于研究和表征合成聚合物和生物聚合物的内部结构的粘弹响应。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Transient Microsphere Model for Nonlinear Viscoelasticity in Dynamic Polymer Networks
  • DOI:
    10.1115/1.4052375
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samuel C Lamont;F. Vernerey
  • 通讯作者:
    Samuel C Lamont;F. Vernerey
Dynamic competition of inflation and delamination in the finite deformation of thin membranes
薄膜有限变形中膨胀和分层的动态竞争
  • DOI:
    10.1039/c9sm00988d
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Benet, Eduard;Vernerey, Franck J.
  • 通讯作者:
    Vernerey, Franck J.
Mechanics of transiently cross-linked nematic networks
瞬时交联向列网络的力学
Nonsteady fracture of transient networks: The case of vitrimer
瞬态网络的非稳态断裂:vitrimer 的案例
Force-dependent bond dissociation explains the rate-dependent fracture of vitrimers
力依赖性键解离解释了玻璃体的速率依赖性断裂
  • DOI:
    10.1039/d1sm00518a
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Song, Zhaoqiang;Shen, Tong;Vernerey, Franck J.;Cai, Shengqiang
  • 通讯作者:
    Cai, Shengqiang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Franck Vernerey其他文献

Analysis of Group of Fish Response to Startle Reaction
  • DOI:
    10.1007/s00332-022-09855-0
  • 发表时间:
    2022-10-08
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Violet Mwaffo;Franck Vernerey
  • 通讯作者:
    Franck Vernerey

Franck Vernerey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Franck Vernerey', 18)}}的其他基金

Mechanics of Active Slide-Ring Networks: from Molecular Motors to Molecular Machine
有源滑环网络的力学:从分子马达到分子机器
  • 批准号:
    2023179
  • 财政年份:
    2021
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Standard Grant
CAREER: In Silico Tissue Engineering: An Active-Learning Computational Methodology to Guide the Design of Tissue Scaffolds
职业:计算机组织工程:指导组织支架设计的主动学习计算方法
  • 批准号:
    1350090
  • 财政年份:
    2014
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Standard Grant
Ultrathin Deformable Materials and Protective Coatings Bio-inspired by Scaled Skin
受鳞片皮肤启发的超薄可变形材料和防护涂层
  • 批准号:
    1411320
  • 财政年份:
    2014
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Continuing Grant
Multiscale Biomimetic Study of the Mechanics of Fish Scales
鱼鳞力学的多尺度仿生研究
  • 批准号:
    0927585
  • 财政年份:
    2009
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Standard Grant
Experimental Study and Theoretical Modeling of High Performance Recycled Aggregate Concrete
高性能再生骨料混凝土的实验研究和理论建模
  • 批准号:
    0900607
  • 财政年份:
    2009
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Standard Grant

相似国自然基金

多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
  • 批准号:
    91418205
  • 批准年份:
    2014
  • 资助金额:
    170.0 万元
  • 项目类别:
    重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
  • 批准号:
    60673142
  • 批准年份:
    2006
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Going Beyond the Dyad: A Network Theory for Understanding the Challenges of Friendship
职业:超越二元:理解友谊挑战的网络理论
  • 批准号:
    2340942
  • 财政年份:
    2024
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Continuing Grant
Adaptive Tensor Network Decomposition for Multidimensional Machine Learning Theory and Applications
多维机器学习理论与应用的自适应张量网络分解
  • 批准号:
    24K20849
  • 财政年份:
    2024
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ATD:Understanding Adversarial Examples in Neural Network: Theory and Algorithms
ATD:理解神经网络中的对抗性例子:理论和算法
  • 批准号:
    2318926
  • 财政年份:
    2023
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Standard Grant
CAREER: Developing Neural Network Theory for Uncovering How the Brain Learns
职业:发展神经网络理论以揭示大脑如何学习
  • 批准号:
    2239780
  • 财政年份:
    2023
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Standard Grant
SBIR Phase I: Artificial Intelligence and Network Theory for Elections
SBIR 第一阶段:选举的人工智能和网络理论
  • 批准号:
    2309896
  • 财政年份:
    2023
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Standard Grant
Deciphering and Overcoming CDK4/6 Inhibitor Resistance Mechanisms Using Network Structure Theory
利用网络结构理论破译和克服 CDK4/6 抑制剂耐药机制
  • 批准号:
    23K14156
  • 财政年份:
    2023
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: CDS&E: Theory-infused Neural Network (TinNet) for Nonadiabatic Molecular Simulations
合作研究:CDS
  • 批准号:
    2245402
  • 财政年份:
    2023
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Standard Grant
Interdisciplinary Network on Environmental Emotions: Theory, Testimony, Politics
环境情绪跨学科网络:理论、证词、政治
  • 批准号:
    AH/X009106/1
  • 财政年份:
    2023
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Research Grant
Collaborative Research: CDS&E: Theory-infused Neural Network (TinNet) for Nonadiabatic Molecular Simulations
合作研究:CDS
  • 批准号:
    2245403
  • 财政年份:
    2023
  • 资助金额:
    $ 39.89万
  • 项目类别:
    Standard Grant
Using Symptom Network Models to Translate Theory to Clinical Applications
使用症状网络模型将理论转化为临床应用
  • 批准号:
    10387871
  • 财政年份:
    2022
  • 资助金额:
    $ 39.89万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了