Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations

三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索

基本信息

  • 批准号:
    2205590
  • 负责人:
  • 金额:
    $ 54.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Navier-Stokes equations have been around for more than 150 years. Physicists use them to model ocean currents, weather patterns and turbulent flows behind a commercial jet or ship. Most physicists and engineers believe that the smooth solutions of the Navier-Stokes equations will not break down without external forcing. On the other hand, a recent study by the PI indicates that the Navier-Stokes equations could develop a catastrophic behavior if one starts with a highly symmetric but perfectly smooth flow. Such scenario corresponds to a "perfect storm" in which all things that could potentially go wrong indeed go wrong. Potentially singular behavior of the Navier-Stokes equations could post tremendous damage to our environment, affect the safety of our planes and ships, and our ability to do accurate weather forecasting. The purpose of this project is to investigate under what conditions the Euler and the Navier-Stokes equations may develop singular behavior. The understanding of this question would enable us to avoid catastrophic behavior of the fluid flows in nature. The ultimate goal of this research is to develop effective analytical and computational tools that would enhance our ability to model and predict various complex phenomena in nature so that we can have more confidence in the safety of commercial jets and ships, and weather forecasting. Additional impact of this project will be the involvement of graduate students. The interdisciplinary training they receive in this project will be very important for their future careers in mathematics and science.Whether the 3D incompressible Euler equations develop finite time singularities from smooth initial data has been a longstanding open question. Built upon the results obtained from the prior NSF support, this project aims at providing a rigorous proof of the potential finite time singularity in the 3D Euler equations with smooth initial data and boundary. A major approach of the research is to prove the existence and stability of an approximate self-similar profile with a small residual error for the 3D axisymmetric Euler equations. Numerical computations will first be conducted to construct an approximate self-similar profile with a very small residual error. A crucial step in the analysis is to obtain linear stability for the approximate self-similar profile through a dynamic rescaling formulation. Linear stability will be established by obtaining sharp functional estimates with appropriately chosen singular weights and using space-time estimates with computer assistance. The new techniques and tools developed during this project are likely to have an impact in the neighboring areas of mathematics. Another proposed project is to look for potential singular solutions of the 3D Navier-Stokes equations using specially designed initial data with periodic boundary conditions. The approach relies on using the dynamic rescaling formulation to solve the axisymmetric Navier-Stokes equations and to avoid the potential numerical instability induced by the frequent changes of the adaptive meshes in recent computations. The successful execution of this research would provide valuable insight to the Clay Millennium Problem on the 3D Navier-Stokes equations and become an important step towards its ultimate resolution.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纳维-斯托克斯方程已经存在了150多年。物理学家用它们来模拟洋流、天气模式和商业飞机或船只背后的湍流。大多数物理学家和工程师认为,如果没有外力,Navier-Stokes方程的光滑解不会分解。另一方面,PI最近的一项研究表明,如果从高度对称但完全平滑的流动开始,Navier-Stokes方程可能会出现灾难性的行为。这种情况相当于一场“完美风暴”,在这场风暴中,所有可能出错的事情都真的出错了。纳维-斯托克斯方程的潜在奇异行为可能会对我们的环境造成巨大的破坏,影响我们的飞机和船只的安全,以及我们准确预报天气的能力。本项目的目的是研究在什么条件下欧拉方程和纳维-斯托克斯方程可能发展为奇异行为。对这个问题的理解将使我们能够避免自然界中流体流动的灾难性行为。这项研究的最终目标是开发有效的分析和计算工具,以提高我们模拟和预测自然界各种复杂现象的能力,从而使我们对商用飞机和船舶的安全以及天气预报更有信心。这个项目的另一个影响是研究生的参与。他们在这个项目中接受的跨学科训练对他们未来在数学和科学领域的职业生涯非常重要。三维不可压缩欧拉方程是否从光滑初始数据发展出有限时间奇点一直是一个长期悬而未决的问题。本项目建立在先前获得NSF支持的结果的基础上,旨在提供具有光滑初始数据和边界的三维欧拉方程的潜在有限时间奇点的严格证明。研究的一个主要途径是证明三维轴对称欧拉方程具有小残差的近似自相似轮廓的存在性和稳定性。首先进行数值计算,以建立一个近似的自相似轮廓,残差很小。分析的关键步骤是通过动态重标公式获得近似自相似轮廓的线性稳定性。线性稳定性将通过适当选择奇异权值的尖锐泛函估计和在计算机辅助下使用时空估计来建立。在这个项目中开发的新技术和工具可能会对邻近的数学领域产生影响。另一个被提议的项目是寻找三维Navier-Stokes方程的潜在奇异解,使用特殊设计的具有周期边界条件的初始数据。该方法采用动态重标公式求解轴对称Navier-Stokes方程,避免了在最近的计算中由于自适应网格的频繁变化而引起的数值不稳定性。该研究的成功实施将为三维Navier-Stokes方程的Clay千年问题提供有价值的见解,并成为最终解决该问题的重要一步。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Potential Singularity of the 3D Euler Equations in the Interior Domain
Exponentially Convergent Multiscale Methods for 2D High Frequency Heterogeneous Helmholtz Equations
二维高频异质亥姆霍兹方程的指数收敛多尺度方法
  • DOI:
    10.1137/22m1507802
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Chen, Yifan;Hou, Thomas Y.;Wang, Yixuan
  • 通讯作者:
    Wang, Yixuan
Potential Singularity Formation of Incompressible Axisymmetric Euler Equations with Degenerate Viscosity Coefficients
具有简并粘度系数的不可压缩轴对称欧拉方程的势奇异性形成
Potentially Singular Behavior of the 3D Navier–Stokes Equations
Asymptotically self-similar blowup of the Hou-Luo model for the 3D Euler equations
  • DOI:
    10.1007/s40818-022-00140-7
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Jiajie Chen;T. Hou;De Huang
  • 通讯作者:
    Jiajie Chen;T. Hou;De Huang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Hou其他文献

On the stability of the unsmoothed Fourier method for hyperbolic equations
  • DOI:
    10.1007/s002110050019
  • 发表时间:
    1994-02-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Jonathan Goodman;Thomas Hou;Eitan Tadmor
  • 通讯作者:
    Eitan Tadmor
On DoF Conservation in MIMO Interference Cancellation Based on Signal Strength in the Eigenspace
基于特征空间信号强度的MIMO干扰消除中自由度守恒
  • DOI:
    10.1109/tmc.2021.3126449
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Yongce Chen;Shaoran Li;Chengzhang Li;Huacheng Zeng;Brian Jalaian;Thomas Hou;Wenjing Lou
  • 通讯作者:
    Wenjing Lou
Minimizing Age of Information Under General Models for IoT Data Collection
最小化物联网数据收集通用模型下的信息年龄
On the performance of MIMO-based ad hoc networks under imperfect CSI
不完善CSI下基于MIMO的自组织网络性能研究

Thomas Hou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Hou', 18)}}的其他基金

Solving Multiscale Problems and Data Classification with Subsampled Data by Integrating Partial Differential Equation Analysis with Data Science
通过将偏微分方程分析与数据科学相结合,利用二次采样数据解决多尺度问题和数据分类
  • 批准号:
    1912654
  • 财政年份:
    2019
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
A Computer-Assisted Analysis Framework for Studying Finite Time Singularities of the 3D Euler Equations and Related Models
用于研究 3D 欧拉方程及相关模型的有限时间奇异性的计算机辅助分析框架
  • 批准号:
    1907977
  • 财政年份:
    2019
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
NeTS: Small: Smart Interference Management for Wireless Internet of Things
NetS:小型:无线物联网的智能干扰管理
  • 批准号:
    1617634
  • 财政年份:
    2016
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
Investigating Potential Singularities in the Euler and Navier-Stokes Equations Using an Integrated Analytical and Computational Approach
使用综合分析和计算方法研究欧拉和纳维-斯托克斯方程中的潜在奇点
  • 批准号:
    1613861
  • 财政年份:
    2016
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Cognitive Green Building: A Holistic Cyber-Physical Analytic Paradigm for Energy Sustainability
CPS:协同:协作研究:认知绿色建筑:能源可持续性的整体网络物理分析范式
  • 批准号:
    1446478
  • 财政年份:
    2015
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
NeTS: JUNO: Cognitive Security: A New Approach to Securing Future Large Scale and Distributed Mobile Applications
NetS:JUNO:认知安全:保护未来大规模分布式移动应用程序的新方法
  • 批准号:
    1405747
  • 财政年份:
    2014
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
Data-Driven Time-Frequency Analysis via Nonlinear Optimization
通过非线性优化进行数据驱动的时频分析
  • 批准号:
    1318377
  • 财政年份:
    2013
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
  • 批准号:
    1159138
  • 财政年份:
    2012
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: Towards User Privacy in Outsourced Cloud Data Services
CSR:小型:协作研究:在外包云数据服务中实现用户隐私
  • 批准号:
    1217889
  • 财政年份:
    2012
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
Transparent Coexistence for Multi-Hop Secondary Cognitive Radio Networks: Theoretical Foundation, Algorithms, and Implementation
多跳辅助认知无线电网络的透明共存:理论基础、算法和实现
  • 批准号:
    1247830
  • 财政年份:
    2012
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Analysis of uncertainty, long-time statistics and singularity formation in fluid flow models
职业:流体流动模型中的不确定性、长期统计数据和奇点形成分析
  • 批准号:
    2239325
  • 财政年份:
    2023
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Continuing Grant
Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
  • 批准号:
    2306726
  • 财政年份:
    2023
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
  • 批准号:
    2307638
  • 财政年份:
    2023
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
Singularity formation in Kahler geometry
卡勒几何中奇点的形成
  • 批准号:
    2304692
  • 财政年份:
    2023
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
Regularity Versus Singularity Formation in Nonlinear Partial Differential Equations
非线性偏微分方程中的正则性与奇异性形成
  • 批准号:
    2154219
  • 财政年份:
    2022
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2022
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Discovery Grants Program - Individual
Singularity formation in general relativity, and geometric inverse problems.
广义相对论中奇点的形成和几何逆问题。
  • 批准号:
    RGPIN-2020-05108
  • 财政年份:
    2022
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Discovery Grants Program - Individual
Workshop on Trends in Soliton Dynamics and Singularity Formation for Nonlinear Dispersive PDEs
非线性色散偏微分方程孤子动力学和奇点形成趋势研讨会
  • 批准号:
    2230164
  • 财政年份:
    2022
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Standard Grant
Singularity Formation and Propagation in Incompressible Fluids
不可压缩流体中奇点的形成和传播
  • 批准号:
    2124748
  • 财政年份:
    2021
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Continuing Grant
Asymptotics and singularity formation in Nonlinear PDEs related to fluid dynamic, geophysical flows, quantum physics and optics.
与流体动力学、地球物理流、量子物理和光学相关的非线性偏微分方程中的渐近和奇点形成。
  • 批准号:
    RGPIN-2019-06422
  • 财政年份:
    2021
  • 资助金额:
    $ 54.37万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了