Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations
三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索
基本信息
- 批准号:2205590
- 负责人:
- 金额:$ 54.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Navier-Stokes equations have been around for more than 150 years. Physicists use them to model ocean currents, weather patterns and turbulent flows behind a commercial jet or ship. Most physicists and engineers believe that the smooth solutions of the Navier-Stokes equations will not break down without external forcing. On the other hand, a recent study by the PI indicates that the Navier-Stokes equations could develop a catastrophic behavior if one starts with a highly symmetric but perfectly smooth flow. Such scenario corresponds to a "perfect storm" in which all things that could potentially go wrong indeed go wrong. Potentially singular behavior of the Navier-Stokes equations could post tremendous damage to our environment, affect the safety of our planes and ships, and our ability to do accurate weather forecasting. The purpose of this project is to investigate under what conditions the Euler and the Navier-Stokes equations may develop singular behavior. The understanding of this question would enable us to avoid catastrophic behavior of the fluid flows in nature. The ultimate goal of this research is to develop effective analytical and computational tools that would enhance our ability to model and predict various complex phenomena in nature so that we can have more confidence in the safety of commercial jets and ships, and weather forecasting. Additional impact of this project will be the involvement of graduate students. The interdisciplinary training they receive in this project will be very important for their future careers in mathematics and science.Whether the 3D incompressible Euler equations develop finite time singularities from smooth initial data has been a longstanding open question. Built upon the results obtained from the prior NSF support, this project aims at providing a rigorous proof of the potential finite time singularity in the 3D Euler equations with smooth initial data and boundary. A major approach of the research is to prove the existence and stability of an approximate self-similar profile with a small residual error for the 3D axisymmetric Euler equations. Numerical computations will first be conducted to construct an approximate self-similar profile with a very small residual error. A crucial step in the analysis is to obtain linear stability for the approximate self-similar profile through a dynamic rescaling formulation. Linear stability will be established by obtaining sharp functional estimates with appropriately chosen singular weights and using space-time estimates with computer assistance. The new techniques and tools developed during this project are likely to have an impact in the neighboring areas of mathematics. Another proposed project is to look for potential singular solutions of the 3D Navier-Stokes equations using specially designed initial data with periodic boundary conditions. The approach relies on using the dynamic rescaling formulation to solve the axisymmetric Navier-Stokes equations and to avoid the potential numerical instability induced by the frequent changes of the adaptive meshes in recent computations. The successful execution of this research would provide valuable insight to the Clay Millennium Problem on the 3D Navier-Stokes equations and become an important step towards its ultimate resolution.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Navier-Stokes方程已经存在了150多年。物理学家使用它们来建模洋流,天气模式和商用喷气机或船后的动荡流。大多数物理学家和工程师认为,如果没有外部强迫,Navier-Stokes方程的平滑解决方案将不会崩溃。另一方面,PI的最新研究表明,如果一个高度对称但完全光滑的流动开始,Navier-Stokes方程可能会发展出灾难性的行为。这种情况对应于一场“完美的风暴”,其中所有可能出错的事情确实出错了。 Navier-Stokes方程的潜在奇异行为可能会对我们的环境造成巨大破坏,影响飞机和船只的安全,以及我们进行准确的天气预报的能力。该项目的目的是在欧拉和Navier-Stokes方程的哪些条件下进行研究。对这个问题的理解将使我们能够避免流体在自然界流动的灾难性行为。这项研究的最终目的是开发有效的分析和计算工具,以增强我们在自然界建模和预测各种复杂现象的能力,以便我们可以对商业喷气机和船只的安全以及天气预报具有更大的信心。该项目的其他影响将是研究生的参与。他们在该项目中接受的跨学科培训对于他们在数学和科学领域的未来职业非常重要。是否3D不可压缩的Euler方程从平滑的初始数据中发展出有限的时间奇异性,这是一个长期的开放问题。基于从先前的NSF支持获得的结果,该项目旨在提供严格的证明,证明具有平滑的初始数据和边界的3D Euler方程中潜在的有限时间奇点。这项研究的一种主要方法是证明近似自相似轮廓的存在和稳定性,对于3D轴对称Euler方程,残余误差很小。将首先进行数值计算以构建一个近似的自相似轮廓,并具有很小的残留误差。分析的关键步骤是通过动态重新缩放公式获得近似自相似曲线的线性稳定性。线性稳定性将通过获得适当选择的奇异权重的尖锐功能估计来确定,并在计算机协助下使用时空估计。该项目期间开发的新技术和工具可能会影响数学的相邻领域。另一个建议的项目是使用具有周期性边界条件的特殊设计的初始数据来寻找3D Navier-Stokes方程的潜在奇异解决方案。该方法依赖于使用动态重新恢复公式来求解轴对称的Navier-Stokes方程,并避免在最近计算中自适应网格的频繁变化引起的潜在数值不稳定性。这项研究的成功执行将为3D Navier-Stokes方程中的Clay Millennium问题提供宝贵的见解,并成为迈向其最终解决方案的重要一步。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准来通过评估来支持的。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Potential Singularity of the 3D Euler Equations in the Interior Domain
- DOI:10.1007/s10208-022-09585-5
- 发表时间:2021-07
- 期刊:
- 影响因子:3
- 作者:T. Hou
- 通讯作者:T. Hou
Potential Singularity Formation of Incompressible Axisymmetric Euler Equations with Degenerate Viscosity Coefficients
具有简并粘度系数的不可压缩轴对称欧拉方程的势奇异性形成
- DOI:10.1137/22m1470906
- 发表时间:2023
- 期刊:
- 影响因子:1.6
- 作者:Hou, Thomas Y.;Huang, De
- 通讯作者:Huang, De
Exponentially Convergent Multiscale Methods for 2D High Frequency Heterogeneous Helmholtz Equations
二维高频异质亥姆霍兹方程的指数收敛多尺度方法
- DOI:10.1137/22m1507802
- 发表时间:2023
- 期刊:
- 影响因子:1.6
- 作者:Chen, Yifan;Hou, Thomas Y.;Wang, Yixuan
- 通讯作者:Wang, Yixuan
Exponentially Convergent Multiscale Finite Element Method
指数收敛多尺度有限元法
- DOI:10.1007/s42967-023-00260-2
- 发表时间:2023
- 期刊:
- 影响因子:1.6
- 作者:Chen, Yifan;Hou, Thomas Y.;Wang, Yixuan
- 通讯作者:Wang, Yixuan
Asymptotically self-similar blowup of the Hou-Luo model for the 3D Euler equations
- DOI:10.1007/s40818-022-00140-7
- 发表时间:2021-06
- 期刊:
- 影响因子:2.8
- 作者:Jiajie Chen;T. Hou;De Huang
- 通讯作者:Jiajie Chen;T. Hou;De Huang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Hou其他文献
On DoF Conservation in MIMO Interference Cancellation Based on Signal Strength in the Eigenspace
基于特征空间信号强度的MIMO干扰消除中自由度守恒
- DOI:
10.1109/tmc.2021.3126449 - 发表时间:
2023 - 期刊:
- 影响因子:7.9
- 作者:
Yongce Chen;Shaoran Li;Chengzhang Li;Huacheng Zeng;Brian Jalaian;Thomas Hou;Wenjing Lou - 通讯作者:
Wenjing Lou
On the performance of MIMO-based ad hoc networks under imperfect CSI
不完善CSI下基于MIMO的自组织网络性能研究
- DOI:
10.1109/milcom.2008.4753523 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Jia Liu;Thomas Hou - 通讯作者:
Thomas Hou
Minimizing Age of Information Under General Models for IoT Data Collection
最小化物联网数据收集通用模型下的信息年龄
- DOI:
10.1109/tnse.2019.2952764 - 发表时间:
2020 - 期刊:
- 影响因子:6.6
- 作者:
Chengzhang Li;Shaoran Li;Yongce Chen;Thomas Hou;Wenjing Lou - 通讯作者:
Wenjing Lou
Thomas Hou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Hou', 18)}}的其他基金
Solving Multiscale Problems and Data Classification with Subsampled Data by Integrating Partial Differential Equation Analysis with Data Science
通过将偏微分方程分析与数据科学相结合,利用二次采样数据解决多尺度问题和数据分类
- 批准号:
1912654 - 财政年份:2019
- 资助金额:
$ 54.37万 - 项目类别:
Standard Grant
A Computer-Assisted Analysis Framework for Studying Finite Time Singularities of the 3D Euler Equations and Related Models
用于研究 3D 欧拉方程及相关模型的有限时间奇异性的计算机辅助分析框架
- 批准号:
1907977 - 财政年份:2019
- 资助金额:
$ 54.37万 - 项目类别:
Standard Grant
NeTS: Small: Smart Interference Management for Wireless Internet of Things
NetS:小型:无线物联网的智能干扰管理
- 批准号:
1617634 - 财政年份:2016
- 资助金额:
$ 54.37万 - 项目类别:
Standard Grant
Investigating Potential Singularities in the Euler and Navier-Stokes Equations Using an Integrated Analytical and Computational Approach
使用综合分析和计算方法研究欧拉和纳维-斯托克斯方程中的潜在奇点
- 批准号:
1613861 - 财政年份:2016
- 资助金额:
$ 54.37万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Cognitive Green Building: A Holistic Cyber-Physical Analytic Paradigm for Energy Sustainability
CPS:协同:协作研究:认知绿色建筑:能源可持续性的整体网络物理分析范式
- 批准号:
1446478 - 财政年份:2015
- 资助金额:
$ 54.37万 - 项目类别:
Standard Grant
NeTS: JUNO: Cognitive Security: A New Approach to Securing Future Large Scale and Distributed Mobile Applications
NetS:JUNO:认知安全:保护未来大规模分布式移动应用程序的新方法
- 批准号:
1405747 - 财政年份:2014
- 资助金额:
$ 54.37万 - 项目类别:
Standard Grant
Data-Driven Time-Frequency Analysis via Nonlinear Optimization
通过非线性优化进行数据驱动的时频分析
- 批准号:
1318377 - 财政年份:2013
- 资助金额:
$ 54.37万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
- 批准号:
1159138 - 财政年份:2012
- 资助金额:
$ 54.37万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Towards User Privacy in Outsourced Cloud Data Services
CSR:小型:协作研究:在外包云数据服务中实现用户隐私
- 批准号:
1217889 - 财政年份:2012
- 资助金额:
$ 54.37万 - 项目类别:
Standard Grant
Transparent Coexistence for Multi-Hop Secondary Cognitive Radio Networks: Theoretical Foundation, Algorithms, and Implementation
多跳辅助认知无线电网络的透明共存:理论基础、算法和实现
- 批准号:
1247830 - 财政年份:2012
- 资助金额:
$ 54.37万 - 项目类别:
Standard Grant
相似国自然基金
偏振莫比乌斯带奇异性与康普顿散射的光电耦合动力学
- 批准号:12332002
- 批准年份:2023
- 资助金额:239 万元
- 项目类别:重点项目
非定常奇异摄动问题的各向异性时空自适应有限元方法
- 批准号:12301467
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
四阶奇异摄动Bi-wave问题各向异性网格有限元方法一致收敛性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具奇异性偏微分方程谱元法和间断谱元法的误差估计
- 批准号:12271128
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
考虑剪切荷载及变形局部化时灾变破坏的幂律奇异性前兆及灾变预测
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Analysis of uncertainty, long-time statistics and singularity formation in fluid flow models
职业:流体流动模型中的不确定性、长期统计数据和奇点形成分析
- 批准号:
2239325 - 财政年份:2023
- 资助金额:
$ 54.37万 - 项目类别:
Continuing Grant
Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
- 批准号:
2306726 - 财政年份:2023
- 资助金额:
$ 54.37万 - 项目类别:
Standard Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
- 批准号:
2307638 - 财政年份:2023
- 资助金额:
$ 54.37万 - 项目类别:
Standard Grant
Singularity formation in Kahler geometry
卡勒几何中奇点的形成
- 批准号:
2304692 - 财政年份:2023
- 资助金额:
$ 54.37万 - 项目类别:
Standard Grant
Regularity Versus Singularity Formation in Nonlinear Partial Differential Equations
非线性偏微分方程中的正则性与奇异性形成
- 批准号:
2154219 - 财政年份:2022
- 资助金额:
$ 54.37万 - 项目类别:
Standard Grant