Motion of Complex Singularities and Integrability in Surface Dynamics
表面动力学中复杂奇点的运动和可积性
基本信息
- 批准号:1814619
- 负责人:
- 金额:$ 30.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is devoted to a study of surface dynamics that arise either at the interface between different moving fluids or at the fluid's surface. Surface dynamics include breaking of water waves and whitecapping, which are the primary mechanisms for the exchange of energy between the ocean and atmosphere making them a crucial ingredient of the global climate dynamics. These are strongly nonlinear phenomena which require to solve fully nonlinear hydrodynamics equations. Rogue waves are another example of strongly nonlinear large surface waves, which occur spontaneously in the ocean. Relative motion of fluids (wind over the water) induces instability of their common interface such as Kelvin-Helmholtz instability (KHI). This instability that recently became a focus of attention of experimental scientists in the context of the interface between different components superfluid Helium, will also be addressed in this project. This research will focus on development a new type of conformal map and new tools for the efficient description of the strongly nonlinear surface dynamics both for free surface and interfaces. It was Stokes who in the 19th century first used conformal mapping as a tool for studying of the steady flow of the fluid with a free surface. In this approach domains occupied by fluids are conformally mapped into simpler domains such as a lower complex half plane. The dynamics of the surface is then reduced to the dynamics of the conformal map. It gives an enormous advantage for both the analysis and high precision simulations of surface dynamics by allowing to recover the fluid dynamics through the motion of the complex branch cuts and poles in the complex domain. This project is aimed towards advancing the fields of surface dynamics and integrability as well as developing practical tools to identify the reduced models for dissipation of surface gravity waves, affecting global climate dynamics. The research will include an analysis of rogue and breaking waves dynamics through the motion of branch cuts as well as an exploration of integrability of interface dynamics of superfluids in different experimental situations. To address statistics of high amplitude water waves, analytical methods will be employed as well as development of high-performance computing tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究项目致力于研究不同运动流体之间的界面或流体表面产生的表面动力学。表面动力学包括水波的破裂和白浪,这是海洋和大气之间能量交换的主要机制,使其成为全球气候动力学的重要组成部分。这些都是强烈的非线性现象,需要求解完全非线性的流体动力学方程。异常波是另一种强烈非线性的大表面波,它在海洋中自发发生。流体的相对运动(水面上的风)引起了它们共同界面的不稳定性,如开尔文-亥姆霍兹不稳定性(KHI)。这种不稳定性最近成为实验科学家在不同组分超流氦之间的界面背景下关注的焦点,也将在这个项目中得到解决。本研究的重点是开发一种新型的保角映射和新的工具,以有效地描述自由表面和界面的强非线性表面动力学。是斯托克斯在19世纪第一个使用保角映射作为工具来研究具有自由表面的流体的稳定流动。在这种方法中,流体占据的区域被保角映射到更简单的区域,如较低的复半平面。然后将表面的动力学简化为保角映射的动力学。它允许通过复杂区域中复杂分支切割和极点的运动来恢复流体动力学,从而为表面动力学的分析和高精度模拟提供了巨大的优势。本项目旨在推进地表动力学和可积性领域的发展,并开发实用工具来确定影响全球气候动力学的地表重力波耗散的简化模式。本研究将包括通过分支切割运动分析异常波和破碎波动力学,以及探索不同实验情况下超流体界面动力学的可积性。为了解决高振幅水波的统计问题,将采用分析方法以及开发高性能计算工具。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Short branch cut approximation in two-dimensional hydrodynamics with free surface
自由表面二维流体力学中的短分支切割近似
- DOI:10.1098/rspa.2020.0811
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Dyachenko, A. I.;Dyachenko, S. A.;Lushnikov, P. M.;Zakharov, V. E.
- 通讯作者:Zakharov, V. E.
Non-canonical Hamiltonian structure and Poisson bracket for two-dimensional hydrodynamics with free surface
- DOI:10.1017/jfm.2019.219
- 发表时间:2018-09
- 期刊:
- 影响因子:3.7
- 作者:A. Dyachenko;P. Lushnikov;Vladimir E Zakharov
- 通讯作者:A. Dyachenko;P. Lushnikov;Vladimir E Zakharov
Turbulence of Capillary Waves on Shallow Water
浅水中毛细波的湍流
- DOI:10.3390/fluids6050185
- 发表时间:2021
- 期刊:
- 影响因子:1.9
- 作者:Vladimirova, Natalia;Vointsev, Ivan;Skoba, Alena;Falkovich, Gregory
- 通讯作者:Falkovich, Gregory
Poles and Branch Cuts in Free Surface Hydrodynamics
自由表面流体动力学中的极点和分支切割
- DOI:10.1007/s42286-020-00040-y
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Lushnikov, P. M.;Zakharov, V. E.
- 通讯作者:Zakharov, V. E.
Dynamics of poles in two-dimensional hydrodynamics with free surface: new constants of motion
- DOI:10.1017/jfm.2019.448
- 发表时间:2018-09
- 期刊:
- 影响因子:3.7
- 作者:A. Dyachenko;S. Dyachenko;P. Lushnikov;Vladimir E Zakharov
- 通讯作者:A. Dyachenko;S. Dyachenko;P. Lushnikov;Vladimir E Zakharov
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pavel Lushnikov其他文献
Pavel Lushnikov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pavel Lushnikov', 18)}}的其他基金
Spontaneous formation of singularities through critical collapse
通过临界崩溃自发形成奇点
- 批准号:
1412140 - 财政年份:2014
- 资助金额:
$ 30.6万 - 项目类别:
Continuing Grant
Collaborative Research: Vlasov Multi-Dimensional Simulation of Langmuir Wave Collapse and Stimulated Raman Scatter in the Fluid-Kinetic Transition Regime
合作研究:流体动力学转变体系中 Langmuir 波崩溃和受激拉曼散射的 Vlasov 多维模拟
- 批准号:
1004118 - 财政年份:2010
- 资助金额:
$ 30.6万 - 项目类别:
Continuing Grant
Collaborative Research: Strong Turbulence from Singular Collapses in Nonlinear Schroedinger Type of Equations
合作研究:非线性薛定谔方程中奇异塌陷引起的强湍流
- 批准号:
0807131 - 财政年份:2008
- 资助金额:
$ 30.6万 - 项目类别:
Standard Grant
相似国自然基金
TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
- 批准号:32370337
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
二甲双胍对于模型蛋白、γ-secretase、Complex I自由能曲面的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高脂饮食损伤巨噬细胞ndufs4表达激活Complex I/mROS/HIF-1通路参与溃疡性结肠炎研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
线粒体参与呼吸中枢pre-Bötzinger complex呼吸可塑性调控的机制研究
- 批准号:31971055
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
北温带中华蹄盖蕨复合体Athyrium sinense complex的物种分化
- 批准号:31872651
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
边缘鳞盖蕨复合体种 (Microlepia marginata complex) 的网状进化及物种形成研究
- 批准号:31860044
- 批准年份:2018
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
益气通络颗粒及主要单体通过调节cAMP/PKA/Complex I通路治疗气虚血瘀证脑梗死的机制研究
- 批准号:81703747
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
生物钟转录抑制复合体 Evening Complex 调控茉莉酸诱导叶片衰老的分子机制研究
- 批准号:31670290
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
延伸子复合物(Elongator complex)的翻译调控作用
- 批准号:31360023
- 批准年份:2013
- 资助金额:51.0 万元
- 项目类别:地区科学基金项目
Complex I 基因变异与寿命的关联及其作用机制的研究
- 批准号:81370445
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
Algebraic analysis of deformations of non-isolated singularities, computational complex analysis and algorithms
非孤立奇点变形的代数分析、计算复杂性分析和算法
- 批准号:
22K03334 - 财政年份:2022
- 资助金额:
$ 30.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hodge Filtration, Singularities, and Complex Birational Geometry
霍奇过滤、奇点和复杂双有理几何
- 批准号:
2040378 - 财政年份:2020
- 资助金额:
$ 30.6万 - 项目类别:
Continuing Grant
Hodge Filtration, Singularities, and Complex Birational Geometry
霍奇过滤、奇点和复杂双有理几何
- 批准号:
2000610 - 财政年份:2020
- 资助金额:
$ 30.6万 - 项目类别:
Continuing Grant
Complex Monge-Ampère equations and Calabi-Yau manifolds with singularities
复杂的 Monge-Ampère 方程和具有奇点的 Calabi-Yau 流形
- 批准号:
2260081 - 财政年份:2019
- 资助金额:
$ 30.6万 - 项目类别:
Studentship
Algebraic aanalysis of non-isolated singularities and computational complex analysis algorithms
非孤立奇点的代数分析和计算复杂分析算法
- 批准号:
18K03320 - 财政年份:2018
- 资助金额:
$ 30.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological types and analytic invariants of complex surface singularities
复杂表面奇点的拓扑类型和解析不变量
- 批准号:
17K05216 - 财政年份:2017
- 资助金额:
$ 30.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relation between pattern formations and complex singularities of solutions of nonlinear partial differential equations
非线性偏微分方程解的模式结构与复奇点之间的关系
- 批准号:
16K13778 - 财政年份:2016
- 资助金额:
$ 30.6万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Study of solutions and their singularities of nonlinear partial differential equations in the complex domain
复域非线性偏微分方程解及其奇点研究
- 批准号:
15K04966 - 财政年份:2015
- 资助金额:
$ 30.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational complex analysis and algebraic analysis of singularities
计算复数分析和奇点代数分析
- 批准号:
15K04891 - 财政年份:2015
- 资助金额:
$ 30.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study of complex surface singularities with rational homology sphere link
有理同调球面链接的复杂表面奇点研究
- 批准号:
26400064 - 财政年份:2014
- 资助金额:
$ 30.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




