Persistence and Permanence in Biological Interaction Networks

生物相互作用网络中的持久性和持久性

基本信息

  • 批准号:
    1412643
  • 负责人:
  • 金额:
    $ 27.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-15 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

The phenomenon of persistence is the focus of much modern biological and biomedical research. Persistence is found at all scales, from the molecular and cellular, to tissues, organisms, populations, and ecosystems. At the cellular level, persistence in gene and protein networks plays a key role in the establishment of homeostasis, which is the ability of the cell to regulate key variables, so that internal conditions remain relatively constant. At the intracellular level, the nodes of these interaction networks could be signaling molecules, genes, and gene products; at the ecosystem level, the nodes could be the various species and energy resources. Many diseases involve a disturbance of homeostasis in specific types of cells, which corresponds to a loss of persistence in the associated interaction networks. A more complete characterization of persistent systems may improve the understanding of these diseases. This project will create software that implements mathematical methods for understanding persistence, and will allow biologists and biomedical scientists to analyze persistence properties of diverse biological networks of interest. Persistence and permanence refer to the capacity of a system to maintain all of its variables within some fixed limits in a robust way, and this capacity is one of the most important features of biological interaction networks. In order to understand the role played by specific biological interactions (e.g., a signaling pathway in a cell), one often faces great difficulties in trying to interpret the effect of positive and negative feedbacks, nonlinear interactions, and other complex signaling between the nodes of the network. These difficulties are due to the inherent complexity of the dynamics of nonlinear systems. There are significant mathematical challenges to be overcome, whose study will lead to rich new areas of biological insight as well as mathematical theory. This project will analyze persistence as a fundamental theoretical concept that traverses levels of biological complexity. Mathematical and computational tools will be developed to understand persistence in general biological interaction networks. As a concrete step in that direction, this project will focus on biochemical networks, with the aim to provide mathematical tools for drawing precise connections between reaction network structure and its persistence properties. These tools will be applicable to complex networks, and will be able to distinguish between very similar networks having rather different capacities for persistence.
持久性现象是许多现代生物学和生物医学研究的焦点。 从分子和细胞到组织、生物体、种群和生态系统,各个尺度都存在持久性。 在细胞水平上,基因和蛋白质网络的持久性在稳态的建立中发挥着关键作用,稳态是细胞调节关键变量的能力,从而使内部条件保持相对恒定。 在细胞内水平上,这些相互作用网络的节点可以是信号分子、基因和基因产物;在生态系统层面,节点可以是各种物种和能源。 许多疾病涉及特定类型细胞内稳态的紊乱,这对应于相关相互作用网络持久性的丧失。 对持久性系统的更完整的表征可能会提高对这些疾病的理解。 该项目将创建应用数学方法来理解持久性的软件,并使生物学家和生物医学科学家能够分析不同感兴趣的生物网络的持久性特性。持久性和永久性是指系统以稳健的方式将其所有变量维持在一定范围内的能力,这种能力是生物相互作用网络最重要的特征之一。为了理解特定生物相互作用(例如细胞中的信号传导途径)所发挥的作用,在尝试解释网络节点之间的正反馈和负反馈、非线性相互作用以及其他复杂信号传导的影响时常常面临很大的困难。这些困难是由于非线性系统动力学固有的复杂性造成的。有一些重大的数学挑战需要克服,其研究将带来丰富的生物学洞察和数学理论的新领域。该项目将分析持久性作为跨越生物复杂性水平的基本理论概念。将开发数学和计算工具来理解一般生物相互作用网络中的持久性。作为朝这个方向迈出的具体一步,该项目将重点关注生化网络,旨在提供数学工具来绘制反应网络结构与其持久性特性之间的精确联系。这些工具将适用于复杂的网络,并且能够区分具有相当不同的持久能力的非常相似的网络。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gheorghe Craciun其他文献

Planar chemical reaction systems with algebraic and non-algebraic limit cycles
具有代数和非代数极限环的平面化学反应系统
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gheorghe Craciun;Radek Erban
  • 通讯作者:
    Radek Erban

Gheorghe Craciun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gheorghe Craciun', 18)}}的其他基金

Robust Persistence and Permanence in Biological Interaction Networks
生物相互作用网络中的鲁棒持久性和持久性
  • 批准号:
    2051568
  • 财政年份:
    2021
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant
Robust Persistence and Permanence in Biological Interaction Networks
生物相互作用网络中的鲁棒持久性和持久性
  • 批准号:
    1816238
  • 财政年份:
    2018
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant

相似海外基金

Engineering toolboxes to verify the fate mechanism and permanence of drawndown carbon
验证碳消耗的命运机制和持久性的工程工具箱
  • 批准号:
    RGPIN-2022-04245
  • 财政年份:
    2022
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Discovery Grants Program - Individual
Robust Persistence and Permanence in Biological Interaction Networks
生物相互作用网络中的鲁棒持久性和持久性
  • 批准号:
    2051568
  • 财政年份:
    2021
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant
Secondary forest permanence in the Brazilian Amazon
巴西亚马逊次生林的永久性
  • 批准号:
    NE/T014490/1
  • 财政年份:
    2020
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Research Grant
Growing up in residential child care - Exploring permanence, relationships, and relatedness
在寄宿儿童保育中成长——探索持久性、关系和相关性
  • 批准号:
    2449587
  • 财政年份:
    2020
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Studentship
Very young babies returning home from public care: pathways to permanence
非常年幼的婴儿从公共护理中回家:走向永久的途径
  • 批准号:
    2202295
  • 财政年份:
    2019
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Studentship
Robust Persistence and Permanence in Biological Interaction Networks
生物相互作用网络中的鲁棒持久性和持久性
  • 批准号:
    1816238
  • 财政年份:
    2018
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant
Piagetian Object Permanence in the Raccoon (Procyon lotor)
皮亚杰的浣熊物体持久性(Procyon lotor)
  • 批准号:
    511064-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Permanence of the recent expansions of the OMZ and denitrification regimes in the eastern tropical North Pacific
热带北太平洋东部 OMZ 和反硝化机制近期扩张的持久性
  • 批准号:
    1657958
  • 财政年份:
    2017
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Standard Grant
After Time: Permanence, Recursion, Prevention
时间之后:持久性、递归性、预防性
  • 批准号:
    320027913
  • 财政年份:
    2016
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Priority Programmes
Development of a manufacturing method for high permanence kozo paper
高耐久古造纸制造方法的开发
  • 批准号:
    23300323
  • 财政年份:
    2011
  • 资助金额:
    $ 27.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了