Collaborative Research: Novel Data Assimilation Techniques in Mathematical Cardiology-Development, Analysis and Validation
合作研究:数学心脏病学中的新数据同化技术的开发、分析和验证
基本信息
- 批准号:1412973
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Heart disease remains the leading cause of death in industrialized countries, including the US, where it causes 1/3 of all total deaths. Normally, the heart contracts in response to electrical waves that propagate through cardiac muscle; however, deadly arrhythmias can result when disturbances arise in these electrical waves occur and lead to irregular heart contractions. Scientific computing applied to cardiovascular problems is becoming a formidable tool (in addition to in vitro and in vivo studies) not only to understand these pathologies but also to design devices and optimize therapies. For computing simulations to be reliable and accurate in clinical settings, it is crucial that cardiac conductivities and other parameter values utilized in mathematical models are estimated carefully. Unfortunately, there is no common agreement for these parameters, and the uncertainty surrounding their values affects the reliability of quantitative analysis. In this project, we use a combined approach of mathematical methods, computing techniques and experiments to estimate accurately these parameters necessary to perform numerical simulations of cardiac tissue dynamics in normal and diseased tissue correctly. This research has the potential to elucidate arrhythmia mechanisms and to develop therapies by providing a quantified testbed for simulations. It is a truly interdisciplinary project that connects biology, physiology, physics and computation through a mathematical methodology and an integrative approach between theory, simulations and experiments. Results will be made available the public and other researchers via publications and online via TheVirtualHeart.org.The bidomain model for electrocardiology is the accepted mathematical formalism for modeling the propagation of cardiac action potentials across tissue when including intra- and extracellular components. Numerical simulations of electrical propagation in heart tissue are extremely sensitive to the values used for the conductivity, which is described by a 3D symmetric tensor for each point in space. A precise quantification of the entries of this tensor in practice is still an open and challenging problem from both the mathematical and biological points of view. We formulate the problem of conductivity quantification as a variational inverse problem. The conductivities are regarded as the control variable for the minimization of the mismatch between the activation time computed and the one retrieved from potential measurements. The two challenges addressed by the present proposal are (i) development and analysis of specific computational methods for the solution of the inverse problem including appropriate model reduction techniques to solve the problem in real cases and (ii) extensive validation of the methods in experimental settings for different tissues within the heart, such as right and left ventricles and atria, and for different mammalian tissues. The proposed research will develop new mathematical methods and techniques for inverse problems and will advance our understanding of wave propagation in cardiac tissue for normal and diseased states. It will further allow the use of mathematical models and methods for real applications, particularly when addressing clinical problems.
心脏病仍然是包括美国在内的工业化国家的主要死亡原因,占总死亡人数的1/3。 正常情况下,心脏收缩响应于通过心肌传播的电波;然而,当这些电波发生干扰并导致不规则的心脏收缩时,可能会导致致命的心律失常。应用于心血管问题的科学计算正在成为一个强大的工具(除了体外和体内研究),不仅可以了解这些病理,而且可以设计设备和优化治疗。为了在临床环境中可靠和准确地计算模拟,仔细估计数学模型中使用的心脏传导率和其他参数值至关重要。不幸的是,这些参数没有共同的协议,其值的不确定性影响定量分析的可靠性。在这个项目中,我们使用的数学方法,计算技术和实验相结合的方法来准确地估计这些参数进行正常和病变组织的心脏组织动力学的数值模拟正确。这项研究有可能阐明心律失常的机制,并通过提供一个量化的模拟试验平台来开发治疗方法。这是一个真正的跨学科项目,通过数学方法和理论,模拟和实验之间的综合方法将生物学,生理学,物理学和计算联系起来。结果将通过出版物和TheVirtualHeart.org在线提供给公众和其他研究人员。心电学的bidomain模型是公认的数学形式主义,用于模拟心脏动作电位在组织中的传播,包括细胞内和细胞外成分。心脏组织中的电传播的数值模拟对用于电导率的值极其敏感,电导率由空间中每个点的3D对称张量描述。从数学和生物学的角度来看,这个张量的条目在实践中的精确量化仍然是一个开放的和具有挑战性的问题。我们将电导率量化问题表述为变分反问题。的电导率被视为控制变量之间的不匹配的激活时间计算和检索从潜在的测量。本提案解决的两个挑战是(i)开发和分析用于解决逆问题的特定计算方法,包括适当的模型简化技术以解决真实的情况下的问题,以及(ii)在心脏内的不同组织(例如,右心室和左心室以及心房)以及不同哺乳动物组织的实验设置中对方法进行广泛验证。这项研究将为逆问题开发新的数学方法和技术,并将促进我们对正常和疾病状态下心脏组织中波传播的理解。它将进一步允许将数学模型和方法用于真实的应用,特别是在解决临床问题时。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Efficient estimation of cardiac conductivities: A proper generalized decomposition approach
- DOI:10.1016/j.jcp.2020.109810
- 发表时间:2020-12-15
- 期刊:
- 影响因子:4.1
- 作者:Barone, Alessandro;Carlino, Michele Giuliano;Veneziani, Alessandro
- 通讯作者:Veneziani, Alessandro
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alessandro Veneziani其他文献
NOVEL IN-HUMAN FOUR DIMENSIONAL WALL SHEAR STRESS CALCULATION OF A CORONARY BIORESORBABLE SCAFFOLD USING OPTICAL COHERENCE TOMOGRAPHY IMAGES AND BLOOD FLOW SIMULATIONS
- DOI:
10.1016/s0735-1097(15)61832-0 - 发表时间:
2015-03-17 - 期刊:
- 影响因子:
- 作者:
Boyi Yang;Bill Gogas;Gaetano Esposito;Olivia Hung;Emad Rasoul Arzrumly;Marina Piccinelli;Spencer King;Don Giddens;Alessandro Veneziani;Habib Samady - 通讯作者:
Habib Samady
Platform and algorithm effects on computational fluid dynamics applications in life sciences
- DOI:
10.1016/j.future.2016.03.024 - 发表时间:
2017-02-01 - 期刊:
- 影响因子:
- 作者:
Sofia Guzzetti;Tiziano Passerini;Jaroslaw Slawinski;Umberto Villa;Alessandro Veneziani;Vaidy Sunderam - 通讯作者:
Vaidy Sunderam
Stent underexpansion is associated with high wall shear stress: a biomechanical analysis of the shear stent study
- DOI:
10.1007/s10554-023-02838-6 - 发表时间:
2023-04-29 - 期刊:
- 影响因子:1.500
- 作者:
Sonali Kumar;David Molony;Sameer Khawaja;Kaylyn Crawford;Elizabeth W. Thompson;Olivia Hung;Imran Shah;Jessica Navas-Simbana;Arlen Ho;Arnav Kumar;Yi-An Ko;Hossein Hosseini;Adrien Lefieux;Joo Myung Lee;Joo-Yong Hahn;Shao-Liang Chen;Hiromasa Otake;Takashi Akasaka;Eun-Seok Shin;Bon-Kwon Koo;Goran Stankovic;Dejan Milasinovic;Chang-Wook Nam;Ki-Bum Won;Javier Escaned;Andrejs Erglis;Yoshinobu Murasato;Alessandro Veneziani;Habib Samady - 通讯作者:
Habib Samady
CRT-500.04 Lower Wall Shear Stress and Clinical Risk Factors are Associated with Endothelial Dysfunction in Patients with Non-Obstructive Coronary Artery Disease
- DOI:
10.1016/j.jcin.2018.01.131 - 发表时间:
2018-02-26 - 期刊:
- 影响因子:
- 作者:
Arnav Kumar;Olivia Y. Hung;Parham Eshtehardi;Elizabeth Thompson;David Sternheim;Sonu Gupta;Karthic Chandran;David S. Molony;Marina Piccinelli;Adrien Lefieux;Michel T. Corban;Michael C. McDaniel;Arshed A. Quyyumi;Bill D. Gogas;Don P. Giddens;Alessandro Veneziani;Habib Samady - 通讯作者:
Habib Samady
THE ABSORB BIORESORBABLE VASCULAR SCAFFOLDS ARE ASSOCIATED WITH LOW WALL SHEAR STRESS COMPARED TO XIENCE V: A BIOMECHANICAL ANALYSIS OF THE ABSORB III IMAGING STUDY
- DOI:
10.1016/s0735-1097(19)31914-x - 发表时间:
2019-03-12 - 期刊:
- 影响因子:
- 作者:
Arnav Kumar;Bill Gogas;Elizabeth W. Thompson;Hossein Hosseini;David Molony;Adrien Lefieux;Karthic Chandran;Mohamad Raad;David Sternheim;Sonu Gupta;Mostafa Vasigh;Don P. Giddens;Alessandro Veneziani;Patrick W. Serruys;Spencer King;Gregg Stone;Habib Samady - 通讯作者:
Habib Samady
Alessandro Veneziani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alessandro Veneziani', 18)}}的其他基金
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2012686 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Efficient Modeling of Incompressible Fluid Dynamics at Moderate Reynolds Numbers by Deconvolution LES Filters Analysis and Applications to Hemodynamics
合作研究:通过反卷积 LES 滤波器分析和在血流动力学中的应用,对中等雷诺数下的不可压缩流体动力学进行有效建模
- 批准号:
1620406 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Hierarchical model reduction techniques for incompressible fluid dynamics and fluid-structure interaction problems
不可压缩流体动力学和流固耦合问题的分层模型简化技术
- 批准号:
1419060 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347992 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
- 批准号:
2347991 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
- 批准号:
2346198 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
- 批准号:
2346197 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
- 批准号:
2310137 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
- 批准号:
2324033 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: IHBEM: The fear of here: Integrating place-based travel behavior and detection into novel infectious disease models
合作研究:IHBEM:这里的恐惧:将基于地点的旅行行为和检测整合到新型传染病模型中
- 批准号:
2327797 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
- 批准号:
2219796 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant














{{item.name}}会员




