Collaborative Research: Efficient Modeling of Incompressible Fluid Dynamics at Moderate Reynolds Numbers by Deconvolution LES Filters Analysis and Applications to Hemodynamics
合作研究:通过反卷积 LES 滤波器分析和在血流动力学中的应用,对中等雷诺数下的不可压缩流体动力学进行有效建模
基本信息
- 批准号:1620406
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computational fluid dynamics has emerged as a powerful tool to study the physiopathology of the cardiovascular system and for patient-specific Surgical Planning (SP) for cardiovascular diseases. Recently, clinical trials - the standard procedure for understanding diseases and assessing the impact of therapies and devices in the clinical practice - have been supported by a massive use of numerical simulations to improve the knowledge extracted from measured data, leading to Computer Aided Clinical Trials (CACT). For a large variety of pathologies involving the aorta - the major artery of the circulation - this requires to work with turbulent flows. While Direct Numerical Simulation in this context can be appropriate for a proof of concept, for the large number of patients involved in CACT and SP we need different numerical tools to provide the appropriate trade-off between accuracy and reliability needed by clinical applications and computational efficiency needed by tight deadlines. As CACT and SP are new emerging concepts in cardiovascular mathematics, an appropriate numerical modeling of turbulent physiological flows for clinical applications is now an unmet need that we intend to solve in this proposal.A possible way to limit the computational costs associated with Direct Numerical Simulations without sacrificing accuracy is to solve the flow average and model properly the effects of the small scales (not directly solved) at the medium and large scales (solved). We intend to investigate carefully new cutting-edge methods for disturbed flows based on Large Eddy Simulation (LES) Deconvolution filtering techniques with the ultimate goal of enabling practical use of numerical tools to improve knowledge extraction and clinical practice through CACT and SP. The main objective of this research is the development and the analysis of a robust and accurate LES based approach requiring no or minimal user's set-up for realistic incompressible flow problems with application to computational hemodynamics. We articulate the project in the following points: (a) Sensitivity analysis of key parameters involved in the method to understand their impact on the solution, leading to an automated parameter set-up through physical and numerical arguments. (b) Development and analysis of high-order in time methods, particularly for the computation of the pressure, with consequent improvement of the mass conservation properties. (c) Analysis of the impact of our LES approach on non-Dirichlet boundary conditions and the possible backflow stabilizing effects. We plan to test the method on both academic and real bioengineering problems. Finally, we plan to deliver a finite element open source library incorporating the findings of our research, available for CACT and SP.
计算流体动力学已成为研究心血管系统病理生理学和心血管疾病患者特定手术计划 (SP) 的强大工具。最近,临床试验——在临床实践中了解疾病以及评估治疗和设备影响的标准程序——得到了大量使用数值模拟的支持,以改进从测量数据中提取的知识,从而产生了计算机辅助临床试验(CACT)。对于涉及主动脉(循环的主要动脉)的多种病理,这需要使用湍流。虽然在这种情况下直接数值模拟可能适合概念验证,但对于参与 CACT 和 SP 的大量患者,我们需要不同的数值工具来在临床应用所需的准确性和可靠性与紧迫期限所需的计算效率之间提供适当的权衡。由于 CACT 和 SP 是心血管数学中的新兴概念,因此针对临床应用的湍流生理流的适当数值建模现在是一个未满足的需求,我们打算在本提案中解决。在不牺牲精度的情况下限制与直接数值模拟相关的计算成本的一种可能方法是求解流量平均值并正确模拟小尺度(未直接求解)在中尺度和大尺度的影响 (已解决)。我们打算仔细研究基于大涡模拟 (LES) 反卷积滤波技术的扰流新前沿方法,最终目标是通过 CACT 和 SP 实现数值工具的实际使用,以改进知识提取和临床实践。本研究的主要目标是开发和分析一种稳健且准确的基于 LES 的方法,无需或只需最少的用户设置即可解决现实的不可压缩流动问题,并将其应用于计算血液动力学。我们从以下几点阐述该项目:(a)对该方法中涉及的关键参数进行敏感性分析,以了解它们对解决方案的影响,从而通过物理和数值参数实现自动参数设置。 (b) 开发和分析高阶时间方法,特别是计算压力,从而改进质量守恒特性。 (c) 分析我们的 LES 方法对非狄利克雷边界条件的影响以及可能的回流稳定效应。 我们计划在学术和实际生物工程问题上测试该方法。最后,我们计划提供一个包含我们研究成果的有限元开源库,可用于 CACT 和 SP。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Backflow stabilization by deconvolution-based large eddy simulation modeling
- DOI:10.1016/j.jcp.2019.109103
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Huijuan Xu;Francesca Di Massimo;D. Baroli;A. Quaini;A. Veneziani
- 通讯作者:Huijuan Xu;Francesca Di Massimo;D. Baroli;A. Quaini;A. Veneziani
Global Sensitivity Analysis for Patient-Specific Aortic Simulations: The Role of Geometry, Boundary Condition and Large Eddy Simulation Modeling Parameters
针对特定患者主动脉模拟的全局敏感性分析:几何形状、边界条件和大涡模拟建模参数的作用
- DOI:10.1115/1.4048336
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Xu, Huijuan;Baroli, Davide;Veneziani, Alessandro
- 通讯作者:Veneziani, Alessandro
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alessandro Veneziani其他文献
NOVEL IN-HUMAN FOUR DIMENSIONAL WALL SHEAR STRESS CALCULATION OF A CORONARY BIORESORBABLE SCAFFOLD USING OPTICAL COHERENCE TOMOGRAPHY IMAGES AND BLOOD FLOW SIMULATIONS
- DOI:
10.1016/s0735-1097(15)61832-0 - 发表时间:
2015-03-17 - 期刊:
- 影响因子:
- 作者:
Boyi Yang;Bill Gogas;Gaetano Esposito;Olivia Hung;Emad Rasoul Arzrumly;Marina Piccinelli;Spencer King;Don Giddens;Alessandro Veneziani;Habib Samady - 通讯作者:
Habib Samady
Platform and algorithm effects on computational fluid dynamics applications in life sciences
- DOI:
10.1016/j.future.2016.03.024 - 发表时间:
2017-02-01 - 期刊:
- 影响因子:
- 作者:
Sofia Guzzetti;Tiziano Passerini;Jaroslaw Slawinski;Umberto Villa;Alessandro Veneziani;Vaidy Sunderam - 通讯作者:
Vaidy Sunderam
Stent underexpansion is associated with high wall shear stress: a biomechanical analysis of the shear stent study
- DOI:
10.1007/s10554-023-02838-6 - 发表时间:
2023-04-29 - 期刊:
- 影响因子:1.500
- 作者:
Sonali Kumar;David Molony;Sameer Khawaja;Kaylyn Crawford;Elizabeth W. Thompson;Olivia Hung;Imran Shah;Jessica Navas-Simbana;Arlen Ho;Arnav Kumar;Yi-An Ko;Hossein Hosseini;Adrien Lefieux;Joo Myung Lee;Joo-Yong Hahn;Shao-Liang Chen;Hiromasa Otake;Takashi Akasaka;Eun-Seok Shin;Bon-Kwon Koo;Goran Stankovic;Dejan Milasinovic;Chang-Wook Nam;Ki-Bum Won;Javier Escaned;Andrejs Erglis;Yoshinobu Murasato;Alessandro Veneziani;Habib Samady - 通讯作者:
Habib Samady
CRT-500.04 Lower Wall Shear Stress and Clinical Risk Factors are Associated with Endothelial Dysfunction in Patients with Non-Obstructive Coronary Artery Disease
- DOI:
10.1016/j.jcin.2018.01.131 - 发表时间:
2018-02-26 - 期刊:
- 影响因子:
- 作者:
Arnav Kumar;Olivia Y. Hung;Parham Eshtehardi;Elizabeth Thompson;David Sternheim;Sonu Gupta;Karthic Chandran;David S. Molony;Marina Piccinelli;Adrien Lefieux;Michel T. Corban;Michael C. McDaniel;Arshed A. Quyyumi;Bill D. Gogas;Don P. Giddens;Alessandro Veneziani;Habib Samady - 通讯作者:
Habib Samady
THE ABSORB BIORESORBABLE VASCULAR SCAFFOLDS ARE ASSOCIATED WITH LOW WALL SHEAR STRESS COMPARED TO XIENCE V: A BIOMECHANICAL ANALYSIS OF THE ABSORB III IMAGING STUDY
- DOI:
10.1016/s0735-1097(19)31914-x - 发表时间:
2019-03-12 - 期刊:
- 影响因子:
- 作者:
Arnav Kumar;Bill Gogas;Elizabeth W. Thompson;Hossein Hosseini;David Molony;Adrien Lefieux;Karthic Chandran;Mohamad Raad;David Sternheim;Sonu Gupta;Mostafa Vasigh;Don P. Giddens;Alessandro Veneziani;Patrick W. Serruys;Spencer King;Gregg Stone;Habib Samady - 通讯作者:
Habib Samady
Alessandro Veneziani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alessandro Veneziani', 18)}}的其他基金
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2012686 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Hierarchical model reduction techniques for incompressible fluid dynamics and fluid-structure interaction problems
不可压缩流体动力学和流固耦合问题的分层模型简化技术
- 批准号:
1419060 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Novel Data Assimilation Techniques in Mathematical Cardiology-Development, Analysis and Validation
合作研究:数学心脏病学中的新数据同化技术的开发、分析和验证
- 批准号:
1412973 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343606 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
- 批准号:
2346650 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
- 批准号:
2346651 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Efficient Compilation for Dynamically Reconfigurable Atom Arrays
合作研究:FET:中:动态可重构原子阵列的高效编译
- 批准号:
2313084 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326895 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant














{{item.name}}会员




