Highly efficient and accurate numerical schemes for nonlinear gradient flows with energy stability

具有能量稳定性的非线性梯度流高效准确的数值方案

基本信息

  • 批准号:
    1418689
  • 负责人:
  • 金额:
    $ 19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to study efficient and robust tools to numerically simulate certain nonlinear gradient flows. These numerical schemes will yield highly efficient solvers to study the complicated long-time dynamics of different models in physics, materials engineering, and biological sciences. This work is expected to have a direct and immediate impact on many scientific disciplines. The large time scale simulation of these nonlinear gradient flows is vital for understanding phase transformations of materials at the atomic and nanometer scales, the complex processes in biological growth and development, and the complicated topological change involved in two-phase flows, etc. Some numerical schemes developed by the PI have been efficiently applied in large scale, multi-discipline scientific projects; a collaborative part of the project will leverage expertise in angiogenesis analysis of tumor growth simulation and is expected to lead to significant impact in the medical sciences community. The PI will make the computational tools available in the public domain so that researchers will have direct access to some of the developed algorithms. Through work in the project, a graduate student will receive extensive training in high-performance scientific computing, numerical mathematics, and modeling. In the proposed gradient flow models, the physical energy can be decomposed into purely convex and concave parts. The PI considers convex splitting (CS) numerical schemes, including both the 1st and 2nd order accurate splittings in time, and finite difference, finite element and pseudospectral approximations in space. A major challenge is designing truly efficient solvers for these highly nonlinear CS schemes. For example, a direct nonlinear multigrid solver can be applied. As an alternate approach, linear iterative algorithms are proposed in this work, and a contraction mapping property is expected for these linear iteration based solvers. In other words, although the formulated CS scheme is nonlinear, a linear iteration based algorithm can be used to approximate solutions of this highly nonlinear system with a geometric convergence rate. A detailed comparison between a nonlinear solver and linear iteration algorithm will also be conducted.
这个项目的目标是研究有效和强大的工具来数值模拟某些非线性梯度流。这些数值方案将产生高效的求解器,以研究物理学,材料工程和生物科学中不同模型的复杂长时间动力学。预计这项工作将对许多科学学科产生直接和直接的影响。这些非线性梯度流的大时间尺度模拟对于理解原子和纳米尺度下材料的相变、生物生长和发育的复杂过程以及两相流中涉及的复杂拓扑变化等至关重要。PI开发的一些数值方案已有效地应用于大规模、多学科的科学项目;该项目的合作部分将利用肿瘤生长模拟的血管生成分析方面的专门知识,预计将在医学界产生重大影响。PI将在公共领域提供计算工具,以便研究人员可以直接访问一些开发的算法。 通过该项目的工作,研究生将接受高性能科学计算,数值数学和建模方面的广泛培训。在所提出的梯度流模型中,物理能量可以分解为纯凸和凹部分。 PI考虑凸分裂(CS)数值格式,包括时间上的1阶和2阶精确分裂,以及空间上的有限差分、有限元和伪谱近似。一个主要的挑战是为这些高度非线性的CS方案设计真正有效的求解器。例如,可以应用直接非线性多重网格求解器。作为一种替代方法,线性迭代算法提出了这项工作,并预计这些线性迭代求解器的压缩映射属性。换句话说,虽然公式化的CS方案是非线性的,但基于线性迭代的算法可以用于以几何收敛速率近似该高度非线性系统的解。本文还对非线性求解器和线性迭代算法进行了详细的比较。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cheng Wang其他文献

Corse-to-Fine Road Extraction Based on Local Dirichlet Mixture Models and Multiscale-High-Order Deep Learning
基于局部狄利克雷混合模型和多尺度高阶深度学习的 Corse-to-Fine 道路提取
A joint probability approach for the confluence flood frequency analysis
汇流洪水频率分析的联合概率方法
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheng Wang
  • 通讯作者:
    Cheng Wang
A calculation method of tooth profile modification for tooth contact analysis technology
一种齿形接触分析技术的齿廓修形计算方法
Perinatal Rhesus Monkey Models and Anesthetic‐Induced Neuronal Cell Death
围产期恒河猴模型和麻醉诱导的神经细胞死亡
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Slikker;Fang Liu;Xuan Zhang;X. Zou;T. Patterson;M. Paule;Cheng Wang
  • 通讯作者:
    Cheng Wang
Numerical study of an adaptive domain decomposition algorithm based on Chebyshev tau method for solving singular perturbed problems
基于切比雪夫tau方法的自适应域分解算法求解奇异摄动问题的数值研究
  • DOI:
    10.1016/j.apnum.2017.02.006
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Wenting Shao;Xionghua Wu;Cheng Wang
  • 通讯作者:
    Cheng Wang

Cheng Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cheng Wang', 18)}}的其他基金

Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309548
  • 财政年份:
    2023
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Collaborative Research: Efficient, Accurate, and Structure-Preserving Numerical Methods for Phase Fields-Type Models with Applications
合作研究:高效、准确、结构保持的相场型模型数值方法及其应用
  • 批准号:
    2012269
  • 财政年份:
    2020
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Acoustic Streaming Flows Induced by Microbubbles in Viscoelastic Fluids: Fundamentals and Applications to Micro-Rheometry
粘弹性流体中微泡引起的声流流动:微流变测量的基础和应用
  • 批准号:
    1901578
  • 财政年份:
    2019
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Collaborative Research: Stable and Efficient Convexity-splitting Schemes for Bistable Gradient PDEs
合作研究:双稳态梯度偏微分方程的稳定高效的凸性分割方案
  • 批准号:
    1115420
  • 财政年份:
    2011
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
Supercomputer Study of New Device Concepts Utilizing Quantum Mechanical Effects & the Superlattice Technology
利用量子力学效应的新设备概念的超级计算机研究
  • 批准号:
    8612163
  • 财政年份:
    1986
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant

相似国自然基金

固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
  • 批准号:
    60973026
  • 批准年份:
    2009
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

On new developments of Isogeometric Analysis (IGA) for highly accurate and efficient fracture mechanics analysis
等几何分析(IGA)的新发展,用于高精度和高效的断裂力学分析
  • 批准号:
    22K03879
  • 财政年份:
    2022
  • 资助金额:
    $ 19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
High-definition Virtualization of sediment disaster by highly accurate and efficient numerical simulation
高精度、高效数值模拟,高清虚拟泥沙灾害
  • 批准号:
    22H00507
  • 财政年份:
    2022
  • 资助金额:
    $ 19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Highly Accurate and Efficient Wireless Indoor Positioning System
高精度、高效无线室内定位系统
  • 批准号:
    543343-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 19万
  • 项目类别:
    Engage Grants Program
SHF: Small: Developing a Highly Efficient and Accurate Approximation System for Warehouse-Scale Computers with the Sub-dataset Distribution Aware Approach
SHF:小型:采用子数据集分布感知方法为仓库规模计算机开发高效、准确的近似系统
  • 批准号:
    1717388
  • 财政年份:
    2017
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
MAIRA - Highly efficient and accurate algorithms for mobile analysis of microbes
MAIRA - 用于微生物移动分析的高效且准确的算法
  • 批准号:
    289436404
  • 财政年份:
    2015
  • 资助金额:
    $ 19万
  • 项目类别:
    Research Grants
Efficient and highly accurate solvers for integral equations on surfaces with edges and corners
用于有棱角表面积分方程的高效且高精度求解器
  • 批准号:
    1418723
  • 财政年份:
    2014
  • 资助金额:
    $ 19万
  • 项目类别:
    Standard Grant
A molecular barcoding sequencing kit for highly efficient and accurate single cel
高效准确单细胞分子条形码测序试剂盒
  • 批准号:
    8780513
  • 财政年份:
    2013
  • 资助金额:
    $ 19万
  • 项目类别:
A molecular barcoding sequencing kit for highly efficient and accurate single cel
高效准确单细胞分子条形码测序试剂盒
  • 批准号:
    8904694
  • 财政年份:
    2013
  • 资助金额:
    $ 19万
  • 项目类别:
Highly efficient and highly accurate program for evaluation of optical property using MRMW
使用 MRMW 评估光学性能的高效、高精度程序
  • 批准号:
    24550020
  • 财政年份:
    2012
  • 资助金额:
    $ 19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
HIGHLY EFFICIENT AND ACCURATE MIRROR FINISH OF METAL MOLDS BY USE OF FIGURE-8 TOOL MOTION GENERATED BY A THREE-DIMENSIONAL TOOL OSCILLATION SYSTEM
利用三维刀具振动系统产生的图 8 刀具运动对金属模具进行高效、精确的镜面精加工
  • 批准号:
    21560110
  • 财政年份:
    2009
  • 资助金额:
    $ 19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了