Theory and Implementation of Novel Numerical Methods for Equations with Singularities
奇异性方程新数值方法的理论与实现
基本信息
- 批准号:1418853
- 负责人:
- 金额:$ 15.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Elliptic partial differential equations are essential mathematical models in various scientific disciplines, and the development of methods for approximating solutions of these equations has been a central focus of computational mathematics. The performance of numerical methods in general depends on the smoothness of the solutions under study. Quite common in practical applications, singularities in the solution can severely deteriorate the efficacy of the numerical approximation. Addressing major concerns in scientific computations, the study of finite element methods for singular solutions has led to many effective algorithms, but most of them are for two-dimensional singular problems. The area of finite element approximations for three-dimensional singular solutions is much less explored and much more challenging. Due to the anisotropic multiscale character of the singularity and the complexity of three-dimensional geometry, the existing methods are complicated and difficult to implement and are still missing some critical pieces of theoretical analysis. This project will significantly improve the effectiveness of existing numerical simulations in many areas where multi-dimensional computations are essential. These areas include aircraft design in aerospace engineering, crack propagation in mechanical engineering, elastography in medical imaging, Black-Scholes models in finance, modeling of fluids and of electromagnetic fields, and computation for the Schrödinger equation in quantum mechanics. In this project, the PI proposes a systematic research on finite element methods (FEMs) for singular solutions of elliptic PDEs, especially in 3D. Targeting fundamental theoretical and numerical issues, this research has two main components. (I) Innovative numerical advancements: the development of new 3D meshing algorithms. Simple, explicit, and well structured, these meshes can effectively capture the local behavior of the singular solution and lead to optimal FEMs. (II) Rigorous theoretical investigations: (1) sharp regularity estimates in new function spaces; (2) sharp error analysis in energy and non-energy norms on both 2D graded meshes and the proposed 3D meshes; (3) fast multigrid-based numerical solvers on these meshes; (4) a-posteriori estimates on the proposed 3D meshes and extensions to other 3D PDEs with singularities. Pushing forward the frontier of the FEMs for 3D singular solutions, this proposed research will bring new ideas to the development of novel numerical algorithms for 3D PDEs with broader applications. In addition, the sharp non-energy error estimates and a-posteriori analysis can provide theoretical justifications for nonlinear models and optimization control problems.
椭圆偏微分方程是各个科学学科中必不可少的数学模型,并且开发这些方程的近似解的方法一直是计算数学的中心焦点。数值方法的性能通常取决于所研究的解的平滑度。在实际应用中很常见,解中的奇点会严重降低数值近似的效果。针对科学计算中的主要问题,对奇异解的有限元方法的研究已经产生了许多有效的算法,但其中大多数是针对二维奇异问题的。三维奇异解的有限元近似领域的探索要少得多,而且更具挑战性。由于奇点的各向异性多尺度特征和三维几何的复杂性,现有方法复杂且难以实现,并且仍然缺少一些关键的理论分析。该项目将显着提高多维计算必不可少的许多领域中现有数值模拟的有效性。这些领域包括航空航天工程中的飞机设计、机械工程中的裂纹扩展、医学成像中的弹性成像、金融中的布莱克-斯科尔斯模型、流体和电磁场建模以及量子力学中薛定谔方程的计算。在该项目中,PI 提议对椭圆偏微分方程奇异解的有限元方法 (FEM) 进行系统研究,特别是在 3D 中。针对基础理论和数值问题,本研究有两个主要组成部分。 (I) 创新的数值进展:新的 3D 网格划分算法的开发。这些网格简单、明确且结构良好,可以有效捕获奇异解的局部行为并产生最佳的有限元模型。 (二)严谨的理论研究:(1)新函数空间中尖锐的规律性估计; (2) 对 2D 分级网格和所提出的 3D 网格进行能量和非能量范数的锐误差分析; (3) 这些网格上基于多重网格的快速数值求解器; (4) 对所提出的 3D 网格的后验估计以及对其他具有奇点的 3D PDE 的扩展。这项研究推动了 3D 奇异解 FEM 的前沿发展,将为开发具有更广泛应用的 3D PDE 新型数值算法带来新的思路。此外,尖锐的非能量误差估计和后验分析可以为非线性模型和优化控制问题提供理论依据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hengguang Li其他文献
Multigrid methods for saddle point problems: Oseen system
鞍点问题的多重网格方法:Oseen 系统
- DOI:
10.1016/j.camwa.2017.06.016 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
S. C. Brenner;Hengguang Li;L. Sung - 通讯作者:
L. Sung
A Posteriori Error Estimates for the Weak Galerkin Finite Element Methods on Polytopal Meshes
- DOI:
10.4208/cicp.oa-2018-0058 - 发表时间:
2019-06 - 期刊:
- 影响因子:3.7
- 作者:
Hengguang Li - 通讯作者:
Hengguang Li
LNG_FEM: Generating graded meshes and solving elliptic equations on 2-D domains of polygonal structures
LNG_FEM:在多边形结构的二维域上生成分级网格并求解椭圆方程
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Hengguang Li;V. Nistor - 通讯作者:
V. Nistor
Analysis of a $$C^0$$ finite element method for the biharmonic problem with Dirichlet boundary conditions
- DOI:
10.1007/s11075-025-02062-4 - 发表时间:
2025-04-07 - 期刊:
- 影响因子:2.000
- 作者:
Hengguang Li;Charuka D. Wickramasinghe;Peimeng Yin - 通讯作者:
Peimeng Yin
Double Layer Potentials on Polygons and Pseudodifferential Operators on Lie Groupoids
多边形上的双层势和李群形上的伪微分算子
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yu Qiao;Hengguang Li - 通讯作者:
Hengguang Li
Hengguang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hengguang Li', 18)}}的其他基金
Analysis and Novel Finite Element Methods for Elliptic Equations with Complex Boundary Conditions
复杂边界条件椭圆方程的分析和新颖的有限元方法
- 批准号:
2208321 - 财政年份:2022
- 资助金额:
$ 15.28万 - 项目类别:
Standard Grant
Novel Finite Element Methods for Three-Dimensional Anisotropic Singular Problems
三维各向异性奇异问题的新颖有限元方法
- 批准号:
1819041 - 财政年份:2018
- 资助金额:
$ 15.28万 - 项目类别:
Standard Grant
Novel Numerical Methods for Partial Differential Equations with Low-regularity Data
低正则数据偏微分方程的新数值方法
- 批准号:
1158839 - 财政年份:2011
- 资助金额:
$ 15.28万 - 项目类别:
Standard Grant
Novel Numerical Methods for Partial Differential Equations with Low-regularity Data
低正则数据偏微分方程的新数值方法
- 批准号:
1115714 - 财政年份:2011
- 资助金额:
$ 15.28万 - 项目类别:
Standard Grant
相似海外基金
Improved optimization of covalent ligands using a novel implementation of quantum mechanics suitable for large ligand/protein systems.
使用适用于大型配体/蛋白质系统的量子力学的新颖实现改进了共价配体的优化。
- 批准号:
10601968 - 财政年份:2023
- 资助金额:
$ 15.28万 - 项目类别:
Postdoctoral Fellowship: STEMEdIPRF: Development and Implementation of a Novel Measure of Student Evolution Acceptance
博士后奖学金:STEMEdIPRF:学生进化接受度新衡量标准的开发和实施
- 批准号:
2327483 - 财政年份:2023
- 资助金额:
$ 15.28万 - 项目类别:
Standard Grant
Reducing health disparities in foregut cancers by using modifiable barriers to predict risk for inequitable care: a novel implementation science-based approach
通过使用可修改的障碍来预测不公平护理的风险来减少前肠癌症的健康差异:一种基于科学的新颖实施方法
- 批准号:
10633373 - 财政年份:2023
- 资助金额:
$ 15.28万 - 项目类别:
Novel Implementation of Microporous Annealed Particle HydroGel for Next-generation Posterior Pharyngeal Wall Augmentation
用于下一代咽后壁增强的微孔退火颗粒水凝胶的新实现
- 批准号:
10727361 - 财政年份:2023
- 资助金额:
$ 15.28万 - 项目类别:
Absolute binding free energies for virtual screening: A novel implementation of quantum mechanics/molecular mechanics (QM/MM) for FEP that allows substantial sampling and a significant quantum region
用于虚拟筛选的绝对结合自由能:用于 FEP 的量子力学/分子力学 (QM/MM) 的新颖实现,允许大量采样和重要的量子区域
- 批准号:
10759829 - 财政年份:2023
- 资助金额:
$ 15.28万 - 项目类别:
Development, Clinical Validation, and Readiness for Implementation of a Novel Mp1p D4 Poin Diagnosis of Talaromycosist of Care Test for Rapid
新型 Mp1p D4 点诊断踝部真菌护理测试的开发、临床验证和准备实施
- 批准号:
10700281 - 财政年份:2023
- 资助金额:
$ 15.28万 - 项目类别:
Implementation Grant: Implementing Novel Solutions for Promoting cultural change In geoscience Research and Education (INSPIRE)
实施补助金:实施促进地球科学研究和教育文化变革的新颖解决方案(INSPIRE)
- 批准号:
2228173 - 财政年份:2022
- 资助金额:
$ 15.28万 - 项目类别:
Continuing Grant
Analysis, design, and implementation of novel high-order operator splitting methods
新型高阶算子分裂方法的分析、设计与实现
- 批准号:
574878-2022 - 财政年份:2022
- 资助金额:
$ 15.28万 - 项目类别:
University Undergraduate Student Research Awards
Implementation of novel occupant-centric control strategies in commercial buildings
在商业建筑中实施新颖的以居住者为中心的控制策略
- 批准号:
568511-2021 - 财政年份:2022
- 资助金额:
$ 15.28万 - 项目类别:
Alliance Grants
ACE IMPLEMENTATION PROJECT – Toward Equity in STEM (ProjecTEST): Linking Faculty and Student Perceptions of Success Through Novel, Continuous, Evidence-based Assessment
ACE 实施项目 — 实现 STEM 公平 (ProjecTEST):通过新颖、持续、循证的评估将教师和学生对成功的看法联系起来
- 批准号:
2205950 - 财政年份:2022
- 资助金额:
$ 15.28万 - 项目类别:
Continuing Grant














{{item.name}}会员




