Novel Finite Element Methods for Three-Dimensional Anisotropic Singular Problems

三维各向异性奇异问题的新颖有限元方法

基本信息

  • 批准号:
    1819041
  • 负责人:
  • 金额:
    $ 19.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Elliptic partial differential equations can possess singular solutions in various practical models. The efficacy of numerical simulation highly depends on smoothness and can severely deteriorate in the presence of singularities. The development of effective finite element methods (FEMs) for singular partial differential equations has been a central focus in computational mathematics; however, most of the established methods are for two-dimensional problems. The design of effective three-dimensional (3D) methods is more technically involved and less explored, largely due to the constraints imposed by the 3D geometry and by anisotropic structure in singularities. Existing 3D algorithms are usually tetrahedron-based and sensitive to the domain geometry and to the degree of polynomials, which limits their applications in practical computing. This project aims to develop a novel mesh algorithm that is well-structured, flexible with different 3D elements, and simple in implementation. The new algorithm is expected to significantly improve the effectiveness of 3D numerical simulations in areas where anisotropic solutions frequently occur, including mathematical models in aerospace engineering (e.g., aircraft design), in mechanical engineering (e.g., crack propagation in civil infrastructure), in fluid mechanics, and in electromagnetism.This research project has two main components. (1) Innovative numerical algorithms. The investigator plans to develop a new family of anisotropic meshes that facilitate optimal FEMs approximating 3D anisotropic singular solutions. The mesh construction follows a simple, explicit, and unified approach and applies to four basic 3D elements: the tetrahedron, hexahedron, wedge, and pyramid. With unconventional but implementation-friendly features, these algorithms have shown effectiveness in early numerical tests. (2) Rigorous theoretical investigations and applications. The investigator plans to devise new analytical tools to justify and broaden the applications of the new FEMs, especially when the mesh is anisotropic. This includes (i) optimal error analysis; (ii) new regularity estimates for 3D anisotropic problems; (iii) fast numerical solvers for linear systems from anisotropic meshes; and (iv) efficient implementations in high-performance computing environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
椭圆型偏微分方程在各种实际模型中都具有奇异解。数值模拟的效果很大程度上依赖于光滑性,而在存在奇异点时,数值模拟的效果会严重下降。求解奇异偏微分方程的有效有限元方法(fem)的发展一直是计算数学的中心焦点;然而,现有的方法大多是针对二维问题的。有效的三维(3D)方法的设计涉及更多的技术,但探索较少,主要是由于三维几何和奇点各向异性结构的限制。现有的三维算法通常是基于四面体的,对区域几何形状和多项式度敏感,这限制了它们在实际计算中的应用。本项目旨在开发一种新的网格算法,该算法结构良好,可以灵活地处理不同的3D元素,并且实现简单。新算法有望显著提高各向异性解频繁出现的领域的三维数值模拟的有效性,包括航空航天工程(如飞机设计)、机械工程(如民用基础设施中的裂纹扩展)、流体力学和电磁学中的数学模型。这个研究项目有两个主要组成部分。(1)创新数值算法。研究人员计划开发一种新的各向异性网格,以促进最优fem近似三维各向异性奇异解。网格结构遵循简单,明确和统一的方法,并适用于四个基本的3D元素:四面体,六面体,楔形和金字塔。这些算法具有非常规但易于实现的特性,在早期的数值测试中显示出有效性。(2)严谨的理论研究与应用。研究者计划设计新的分析工具来证明和扩大新的fem的应用,特别是当网格是各向异性的。这包括(i)最优误差分析;(ii)三维各向异性问题的新规则估计;(iii)基于各向异性网格的线性系统的快速数值求解器;(iv)在高性能计算环境中的高效实现。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Two-Grid Method for the C0 Interior Penalty Discretization of the Monge-Ampère Equation
蒙日-安培方程C0内罚离散化的二网格法
Interior Estimates of Finite Volume Element Methods Over Quadrilateral Meshes for Elliptic Equations
  • DOI:
    10.1137/18m1197746
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li Guo;Hengguang Li;Q. Zou
  • 通讯作者:
    Li Guo;Hengguang Li;Q. Zou
Condition numbers of finite element methods on a class of anisotropic meshes
一类各向异性网格有限元方法的条件数
  • DOI:
    10.1016/j.apnum.2020.07.018
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Hengguang Li;Xun Lu
  • 通讯作者:
    Xun Lu
A Posteriori Error Estimates for the Weak Galerkin Finite Element Methods on Polytopal Meshes
Regularity and Finite Element Approximation for Two-Dimensional Elliptic Equations with Line Dirac Sources
线性狄拉克源二维椭圆方程的正则性和有限元逼近
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hengguang Li其他文献

Multigrid methods for saddle point problems: Oseen system
鞍点问题的多重网格方法:Oseen 系统
  • DOI:
    10.1016/j.camwa.2017.06.016
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. C. Brenner;Hengguang Li;L. Sung
  • 通讯作者:
    L. Sung
LNG_FEM: Generating graded meshes and solving elliptic equations on 2-D domains of polygonal structures
LNG_FEM:在多边形结构的二维域上生成分级网格并求解椭圆方程
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hengguang Li;V. Nistor
  • 通讯作者:
    V. Nistor
Analysis of a $$C^0$$ finite element method for the biharmonic problem with Dirichlet boundary conditions
  • DOI:
    10.1007/s11075-025-02062-4
  • 发表时间:
    2025-04-07
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Hengguang Li;Charuka D. Wickramasinghe;Peimeng Yin
  • 通讯作者:
    Peimeng Yin
Double Layer Potentials on Polygons and Pseudodifferential Operators on Lie Groupoids
多边形上的双层势和李群形上的伪微分算子
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu Qiao;Hengguang Li
  • 通讯作者:
    Hengguang Li
Solving Biharmonic Eigenvalue Problem With Navier Boundary Condition Via Poisson Solvers On Non-Convex Domains
通过非凸域上的泊松求解器求解纳维边界条件的双调和特征值问题
  • DOI:
    10.1007/s10915-022-01878-9
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Baiju Zhang;Hengguang Li;Zhimin Zhang
  • 通讯作者:
    Zhimin Zhang

Hengguang Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hengguang Li', 18)}}的其他基金

Analysis and Novel Finite Element Methods for Elliptic Equations with Complex Boundary Conditions
复杂边界条件椭圆方程的分析和新颖的有限元方法
  • 批准号:
    2208321
  • 财政年份:
    2022
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant
Theory and Implementation of Novel Numerical Methods for Equations with Singularities
奇异性方程新数值方法的理论与实现
  • 批准号:
    1418853
  • 财政年份:
    2014
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant
Novel Numerical Methods for Partial Differential Equations with Low-regularity Data
低正则数据偏微分方程的新数值方法
  • 批准号:
    1158839
  • 财政年份:
    2011
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant
Novel Numerical Methods for Partial Differential Equations with Low-regularity Data
低正则数据偏微分方程的新数值方法
  • 批准号:
    1115714
  • 财政年份:
    2011
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant

相似国自然基金

Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
  • 批准号:
    2109949
  • 财政年份:
    2023
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant
Analysis and Novel Finite Element Methods for Elliptic Equations with Complex Boundary Conditions
复杂边界条件椭圆方程的分析和新颖的有限元方法
  • 批准号:
    2208321
  • 财政年份:
    2022
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant
Finite Element Assessment of Novel High-Performance Building Panels
新型高性能建筑板材的有限元评估
  • 批准号:
    567551-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Alliance Grants
A novel hybrid finite-discrete element modeling approach to assess the impact of drilling-induced core damage on laboratory properties of hard brittle rocks
一种新颖的混合有限离散元建模方法,用于评估钻井引起的岩心损伤对硬脆性岩石实验室特性的影响
  • 批准号:
    580759-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Alliance Grants
Novel imaging metrics and finite element methods for understanding role of bone in osteoarthritis
用于了解骨在骨关节炎中的作用的新颖成像指标和有限元方法
  • 批准号:
    RGPIN-2015-06420
  • 财政年份:
    2021
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Element Assessment of Novel High-Performance Building Panels
新型高性能建筑板材的有限元评估
  • 批准号:
    567551-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Alliance Grants
Development of a 3D anatomical database of the human lower limb using novel dissection, digitization, and scanning techniques for the construction of a high fidelity finite element model to simulate n
使用新颖的解剖、数字化和扫描技术开发人体下肢 3D 解剖数据库,以构建高保真度有限元模型来模拟
  • 批准号:
    565027-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Novel imaging metrics and finite element methods for understanding role of bone in osteoarthritis
用于了解骨在骨关节炎中的作用的新颖成像指标和有限元方法
  • 批准号:
    RGPIN-2015-06420
  • 财政年份:
    2020
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Discovery Grants Program - Individual
A Novel Finite Element Method Toolbox for Interface Phenomena in Plasmonic Structures
用于等离子体结构界面现象的新型有限元方法工具箱
  • 批准号:
    2009366
  • 财政年份:
    2020
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Standard Grant
The application of high resolution peripheral quantitative computed tomography and finite element modeling as a novel diagnostic tool for osteoporosis and fracture risk
高分辨率外周定量计算机断层扫描和有限元建模的应用作为骨质疏松症和骨折风险的新型诊断工具
  • 批准号:
    519724-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 19.9万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了