Topics in Computational Dynamics

计算动力学主题

基本信息

项目摘要

Models of complex systems often involve nonlinear differential equations that must be approximated numerically to gain detailed information. To understand the behavior of such approximations, this project explores similarities and differences in the dynamic behavior of the original model and what is obtained through numerical simulations. Understanding when the original model and numerical simulations yield similar dynamic behavior leads to greater confidence when making inferences from simulation results. In addition, stability analysis is useful in understanding the robustness of complex biological and physical phenomena. Of particular emphasis in this project is the application of these results to the dynamic behavior of models of climate dynamics. The techniques to be developed include approaches to dimension reduction and uncertainty quantification based upon Lyapunov exponent theory. The understanding of biological and physical processes will increase due to the computational techniques developed to address the dynamic behavior of detailed, microscopic models. In many areas of science and engineering dynamical systems are employed as models of complex phenomena. The focus of this project is on approximation of solutions of nonlinear dynamical systems. In particular, the investigator and colleagues are interested in understanding the dynamics of the finite dimensional approximations and how they relate to the dynamics of the original dynamical system. The main research topics to be investigated are related to the application of time dependent orthogonal change of variables and in the dynamics of traveling waves under discretization. Specific interests include the use of Lyapunov vectors (analogues of eigenvectors in time dependent stability analysis) for dimensional reduction of dissipative nonlinear differential equations, robust stability for time dependent linear Hamiltonian systems, and techniques for analyzing time dependent stability of numerical time stepping techniques, stability of plane wave solutions to bistable reaction-diffusion equations in periodic media, the impact of time and space discretization on traveling waves, and non-planar traveling waves in discrete media. Techniques to investigate these systems combine numerical analysis and dynamical systems ideas to gain a better understanding of computational dynamics both qualitatively and quantitatively.
复杂系统的模型通常涉及非线性微分方程,必须通过数值近似来获得详细信息。为了理解这种近似的行为,该项目探讨了原始模型的动态行为的相似性和差异,以及通过数值模拟获得的结果。了解原始模型和数值模拟何时产生相似的动态行为,可以在从模拟结果进行推断时提高置信度。此外,稳定性分析有助于理解复杂生物和物理现象的鲁棒性。在这个项目中特别强调的是这些结果的气候动力学模型的动态行为的应用。待开发的技术包括基于李雅普诺夫指数理论的降维和不确定性量化方法。生物和物理过程的理解将增加由于计算技术的发展,以解决详细的,微观模型的动态行为。在科学和工程的许多领域中,动力系统被用作复杂现象的模型。这个项目的重点是非线性动力系统的近似解。特别是,研究人员和同事们有兴趣了解有限维近似的动力学,以及它们如何与原始动力系统的动力学相关。主要的研究课题是与时间相关的正交变量变换的应用和离散化条件下的行波动力学。具体利益包括使用李雅普诺夫向量(在依赖于时间的稳定性分析中的特征向量的类似物),用于耗散非线性微分方程的降维,依赖于时间的线性Hamilton系统的鲁棒稳定性,以及用于分析数值时间步进技术的依赖于时间的稳定性的技术,周期介质中的反应扩散方程的平面波解的稳定性,时间和空间离散化对行波的影响,以及离散介质中的非平面行波。研究这些系统的技术结合了联合收割机数值分析和动力系统的思想,以更好地理解计算动力学的定性和定量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik Van Vleck其他文献

Projected Data Assimilation using Sliding Window Proper Orthogonal Decomposition
使用滑动窗口适当正交分解的投影数据同化
  • DOI:
    10.1016/j.jcp.2024.113235
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Aishah Albarakati;M. Budišić;Erik Van Vleck
  • 通讯作者:
    Erik Van Vleck

Erik Van Vleck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erik Van Vleck', 18)}}的其他基金

The Midwest Mathematics and Climate Conference
中西部数学与气候会议
  • 批准号:
    1445371
  • 财政年份:
    2015
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
The Central Region Conference on Numerical Analysis and Dynamical Systems
中部地区数值分析与动力系统会议
  • 批准号:
    1211934
  • 财政年份:
    2012
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Approximation of Infinite Dimensional Dynamics
无限维动力学的近似
  • 批准号:
    1115408
  • 财政年份:
    2011
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Numerical Spectral Analysis and Approximation of Functional Traveling Waves
函数行波的数值谱分析和近似
  • 批准号:
    0812800
  • 财政年份:
    2008
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Lattice Differential Equations and the Computation of Stability Spectra
格微分方程与稳定谱的计算
  • 批准号:
    0513438
  • 财政年份:
    2005
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Approximation of Lyapunov Exponents
FRG:合作研究:李雅普诺夫指数的近似
  • 批准号:
    0139824
  • 财政年份:
    2002
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Approximation and Computation of Lyapunov Exponents, Global Errors, and Functional Traveling Waves
Lyapunov 指数、全局误差和函数行波的逼近和计算
  • 批准号:
    9973393
  • 财政年份:
    1999
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Research in the Department of Mathematical and Computer Science at the Colorado School of Mines
科罗拉多矿业学院数学与计算机科学系的研究
  • 批准号:
    9732069
  • 财政年份:
    1998
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
System Identification and Nonlinear Wave Equations for the Modeling of Soil Properties
用于土壤特性建模的系统辨识和非线性波动方程
  • 批准号:
    9721424
  • 财政年份:
    1998
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: NSF-CBMS Regional Conference on the Numerical Analysis of Hamiltonian Differential Equations
数学科学:NSF-CBMS 哈密顿微分方程数值分析区域会议
  • 批准号:
    9633686
  • 财政年份:
    1997
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
  • 批准号:
    10090067
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Collaborative R&D
Moving away from aeration – utilising computational fluid dynamics modelling ofmechanical mixing within an industrial scale nature-based wastewater treatment system
摆脱曝气 — 在工业规模的基于自然的废水处理系统中利用机械混合的计算流体动力学模型
  • 批准号:
    10092420
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Collaborative R&D
Computational biomechanical modelling to predict musculoskeletal dynamics: application for 3Rs and changing muscle-bone dynamics
预测肌肉骨骼动力学的计算生物力学模型:3R 的应用和改变肌肉骨骼动力学
  • 批准号:
    BB/Y00180X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Research Grant
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
  • 批准号:
    2347497
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Computational biomechanical modelling to predict musculoskeletal dynamics: application for 3Rs and changing muscle-bone dynamics
预测肌肉骨骼动力学的计算生物力学模型:3R 的应用和改变肌肉骨骼动力学
  • 批准号:
    BB/Y002466/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Research Grant
Computational biomechanical modelling to predict musculoskeletal dynamics: application for 3Rs and changing muscle-bone dynamics
预测肌肉骨骼动力学的计算生物力学模型:3R 的应用和改变肌肉骨骼动力学
  • 批准号:
    BB/Y002415/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Research Grant
Building a computational infrastructure for disclosing performance information of molecular dynamics software
构建用于公开分子动力学软件性能信息的计算基础设施
  • 批准号:
    23K11328
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Informing 4D flow MRI haemodynamic outputs with data science, mathematical models and scale-resolving computational fluid dynamics
通过数据科学、数学模型和尺度解析计算流体动力学为 4D 流 MRI 血液动力学输出提供信息
  • 批准号:
    EP/X028321/1
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Fellowship
Pioneering Theoretical and Computational Studies for Elucidating Dynamic Disorder in Condensed-Phase Dynamics
阐明凝聚相动力学中动态无序的开创性理论和计算研究
  • 批准号:
    23K17361
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Computational fluid dynamics analysis using sophisticated plant models towards the development of digital twins in greenhouse horticulture
使用复杂的植物模型进行计算流体动力学分析,以开发温室园艺中的数字孪生
  • 批准号:
    23K05477
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了