Approximation of Infinite Dimensional Dynamics

无限维动力学的近似

基本信息

项目摘要

In many areas of science and engineering differential equations are employed asmodels of complex phenomena. The focus in this proposal is on the approximationof solutions of infinite dimensional dynamical systems. In particular, the investigatorand his colleagues are interested in understanding the dynamics of the finite dimensional approximations and how they relate to the dynamics of the original dynamical system. The specific issues to be investigated are related to stability of solutions of spatially discrete reaction-diffusion equations, the dynamics of so-called anti-diffusion lattice differential equations, dynamics and computation of traveling waves for neutral mixed type functional differential equations and rigorous computation of periodic orbits for retarded delay equations, robust stability for time dependent linear Hamiltonian systems, numerical techniques for efficient computation of Lyapunov exponent like quantities based upon nonlinear flows, and approximation techniques for stability spectra of delay equations and partial differential equations. Techniques to investigate these systems combine numerical analysis and dynamical systems ideas to gain a better understanding of approximation dynamics. Often in complex systems the differential equations used in modeling are infinite dimensional, but necessarily these models are approximated by finite dimensional systems in order to perform numerical simulations. In order to understand the behavior of these models, the investigator and his colleagues are interested in similarities and differences in the behavior of the original infinite dimensional system and finite dimensional approximations, for example those obtained through discretization. Understanding the impact of discretization leads to greater confidence when making inferences from simulation results. In addition, stability analysis is useful in understanding the robustness of complex biological phenomena that occur in the environment and in identifying instabilities, for example, in models of weather prediction. Discrete models of both biological and physical processes are becoming more important as the need for detailed, microscopic models increases and should benefit from improved analysis and computational capabilities.
在科学和工程的许多领域中,微分方程被用作复杂现象的模型.本文的重点是无穷维动力系统解的近似。特别是,Chaerator和他的同事们有兴趣了解有限维近似的动力学,以及它们如何与原始动力系统的动力学相关。具体研究的问题涉及空间离散反应扩散方程解的稳定性、所谓反扩散格点微分方程的动力学、中立型混合型泛函微分方程的行波动力学和计算、时滞方程周期轨道的严格计算、依赖于时间的线性Hamilton系统的鲁棒稳定性、数值技术的有效计算的李雅普诺夫指数样量的基础上的非线性流,和近似技术的稳定性谱的延迟方程和偏微分方程。研究这些系统的技术将联合收割机数值分析和动力系统思想结合起来,以更好地理解近似动力学。通常,在复杂系统中,建模中使用的微分方程是无限维的,但为了进行数值模拟,这些模型必须用有限维系统来近似。为了理解这些模型的行为,研究者和他的同事们对原始无限维系统和有限维近似的行为的相似性和差异感兴趣,例如通过离散化获得的那些。了解离散化的影响可以提高从仿真结果进行推断时的信心。此外,稳定性分析有助于理解环境中发生的复杂生物现象的鲁棒性,并有助于识别不稳定性,例如天气预测模型。生物和物理过程的离散模型变得越来越重要,因为对详细的微观模型的需求增加,并且应该从改进的分析和计算能力中受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik Van Vleck其他文献

Projected Data Assimilation using Sliding Window Proper Orthogonal Decomposition
使用滑动窗口适当正交分解的投影数据同化
  • DOI:
    10.1016/j.jcp.2024.113235
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Aishah Albarakati;M. Budišić;Erik Van Vleck
  • 通讯作者:
    Erik Van Vleck

Erik Van Vleck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erik Van Vleck', 18)}}的其他基金

The Midwest Mathematics and Climate Conference
中西部数学与气候会议
  • 批准号:
    1445371
  • 财政年份:
    2015
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Standard Grant
Topics in Computational Dynamics
计算动力学主题
  • 批准号:
    1419047
  • 财政年份:
    2014
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Continuing Grant
The Central Region Conference on Numerical Analysis and Dynamical Systems
中部地区数值分析与动力系统会议
  • 批准号:
    1211934
  • 财政年份:
    2012
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Standard Grant
Numerical Spectral Analysis and Approximation of Functional Traveling Waves
函数行波的数值谱分析和近似
  • 批准号:
    0812800
  • 财政年份:
    2008
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Standard Grant
Lattice Differential Equations and the Computation of Stability Spectra
格微分方程与稳定谱的计算
  • 批准号:
    0513438
  • 财政年份:
    2005
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Approximation of Lyapunov Exponents
FRG:合作研究:李雅普诺夫指数的近似
  • 批准号:
    0139824
  • 财政年份:
    2002
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Standard Grant
Approximation and Computation of Lyapunov Exponents, Global Errors, and Functional Traveling Waves
Lyapunov 指数、全局误差和函数行波的逼近和计算
  • 批准号:
    9973393
  • 财政年份:
    1999
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Standard Grant
Research in the Department of Mathematical and Computer Science at the Colorado School of Mines
科罗拉多矿业学院数学与计算机科学系的研究
  • 批准号:
    9732069
  • 财政年份:
    1998
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Standard Grant
System Identification and Nonlinear Wave Equations for the Modeling of Soil Properties
用于土壤特性建模的系统辨识和非线性波动方程
  • 批准号:
    9721424
  • 财政年份:
    1998
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Standard Grant
Mathematical Sciences: NSF-CBMS Regional Conference on the Numerical Analysis of Hamiltonian Differential Equations
数学科学:NSF-CBMS 哈密顿微分方程数值分析区域会议
  • 批准号:
    9633686
  • 财政年份:
    1997
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Standard Grant

相似海外基金

Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
  • 批准号:
    23K12970
  • 财政年份:
    2023
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Topics in infinite dimensional algebra
无限维代数主题
  • 批准号:
    2301871
  • 财政年份:
    2023
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Continuing Grant
Asymptotic theory and infinite-dimensional stochastic calculus
渐近理论和无限维随机微积分
  • 批准号:
    23H03354
  • 财政年份:
    2023
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Applications of Infinite Dimensional Compressive Sensing to Multi-Dimensional Analog Images using Machine Learning to Enhance Results
利用机器学习将无限维压缩感知应用于多维模拟图像以增强结果
  • 批准号:
    2889834
  • 财政年份:
    2023
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Studentship
Ergodic properties of infinite dimensional dynamical systems
无限维动力系统的遍历性质
  • 批准号:
    2888861
  • 财政年份:
    2023
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Studentship
Probability measures in infinite dimensional spaces: random paths, random fields and random geometry
无限维空间中的概率度量:随机路径、随机场和随机几何
  • 批准号:
    RGPIN-2015-05968
  • 财政年份:
    2022
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Discovery Grants Program - Individual
Non-asymptotic inference for high and infinite dimensional data
高维和无限维数据的非渐近推理
  • 批准号:
    RGPIN-2018-05678
  • 财政年份:
    2022
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Discovery Grants Program - Individual
Studies on rigorous integrator for infinite dimensional dynamical systems
无限维动力系统严格积分器研究
  • 批准号:
    22K03411
  • 财政年份:
    2022
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Infinite-dimensional Lie algebras and their applications
无限维李代数及其应用
  • 批准号:
    RGPIN-2019-06170
  • 财政年份:
    2022
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Discovery Grants Program - Individual
Application of Galois cohomology to infinite dimensional Lie theory
伽罗瓦上同调在无限维李理论中的应用
  • 批准号:
    RGPIN-2016-04651
  • 财政年份:
    2021
  • 资助金额:
    $ 21.99万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了