Numerical Spectral Analysis and Approximation of Functional Traveling Waves

函数行波的数值谱分析和近似

基本信息

项目摘要

Differential equations are used as models of physical and biological phenomena in many areas of science and engineering. The focus of the investigator and his colleagues in this proposal is on the approximation of solutions of differential equations. The investigator is interested in the analysis and computation of stability spectra (point spectrum of differential and difference operators, Sacker-Sell spectrum, and Lyapunov exponents) and techniques for analysis and approximation of discrete models similar to time dependent partial differential equations but with a difference operator instead of a spatial differential operator. Discrete models play a prominent role in the modeling of physical and biological systems. Of particular interest are traveling wave solutions of lattice differential equations. The approach taken is to combine dynamical systems and numerical analysis ideas with the modeling and analysis of ordinary, partial, and lattice differential equations. This project is concerned with the development and analysis of efficient, accurate numerical techniques that are useful for the computation and analysis of dynamical systems. Sacker-Sell and Lyapunov spectral intervals are natural analogues of the real parts of the eigenvalues that provide stability information for time varying differential equations. The investigator develops, analyzes, and justifies the use of numerical techniques for the approximation of these spectral intervals. A suite of computational modules for the computation of stability information and for functional traveling waves is being developed. It is backed by analysis of the numerical techniques in a form that should prove useful to working scientists and engineers.The investigator and his colleagues consider issues in the approximation and computation of solutions of differential equations. Differential equations are commonly used to model physical and biological phenomena in many areas of science and engineering. A differential equation is a rule, a relationship between the solution and the rate of change of the solution, that determines how an initial configuration evolves into future configurations. The focus of this project is on the approximation of Lyapunov exponents and related quantities that provide information on stability, the tendency for nearby configurations to evolve and stay nearby, and instability, the tendency for nearby configurations to move apart. This type of analysis is useful in understanding complex biological phenomena that occur in the environment and in identifying instabilities in, for example, models of weather prediction. The analysis and computation of lattice differential equations, i.e., differential equations that are discrete in space and continuous in time, are important in the modeling of physical and biological systems in which the spatial component is naturally discrete, in particular for microscopic models in materials and physiology.
微分方程在科学和工程的许多领域中被用作物理和生物现象的模型。 研究者和他的同事们在这个建议中的重点是微分方程解的近似。研究人员感兴趣的是分析和计算的稳定性谱(点谱的微分和差分算子,Sacker-Sell谱,和李雅普诺夫指数)和技术的分析和近似离散模型类似于时间依赖的偏微分方程,但与差分算子,而不是空间微分算子。 离散模型在物理和生物系统的建模中起着重要的作用。 特别感兴趣的是行波解的格子微分方程。所采取的方法是将联合收割机动力系统和数值分析思想与普通、偏微分方程和格点微分方程的建模和分析相结合。 该项目关注的是开发和分析高效,准确的数值技术,这些技术对动力系统的计算和分析非常有用。 Sacker-Sell和Lyapunov谱区间是特征值的真实的部分的自然类似物,为时变微分方程提供稳定性信息。 研究人员开发,分析,并证明使用数值技术的近似这些频谱间隔。 一套计算模块的稳定性信息的计算和功能行波正在开发中。它得到了数值技术分析的支持,其形式应该被证明对科学家和工程师有用。研究人员和他的同事考虑了微分方程解的逼近和计算中的问题。微分方程通常用于在科学和工程的许多领域中模拟物理和生物现象。 微分方程是一种规则,是解与解的变化率之间的关系,它决定了初始配置如何演变为未来配置。 这个项目的重点是近似的李雅普诺夫指数和相关的数量,提供信息的稳定性,附近的配置发展和保持附近的趋势,和不稳定性,附近的配置移动的趋势分开。这种类型的分析有助于理解环境中发生的复杂生物现象,并识别天气预测模型等的不稳定性。格点微分方程的分析与计算,即,在空间上离散而在时间上连续的微分方程在其中空间分量自然离散的物理和生物系统的建模中是重要的,特别是对于材料和生理学中的微观模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erik Van Vleck其他文献

Projected Data Assimilation using Sliding Window Proper Orthogonal Decomposition
使用滑动窗口适当正交分解的投影数据同化
  • DOI:
    10.1016/j.jcp.2024.113235
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Aishah Albarakati;M. Budišić;Erik Van Vleck
  • 通讯作者:
    Erik Van Vleck

Erik Van Vleck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erik Van Vleck', 18)}}的其他基金

The Midwest Mathematics and Climate Conference
中西部数学与气候会议
  • 批准号:
    1445371
  • 财政年份:
    2015
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Standard Grant
Topics in Computational Dynamics
计算动力学主题
  • 批准号:
    1419047
  • 财政年份:
    2014
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Continuing Grant
The Central Region Conference on Numerical Analysis and Dynamical Systems
中部地区数值分析与动力系统会议
  • 批准号:
    1211934
  • 财政年份:
    2012
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Standard Grant
Approximation of Infinite Dimensional Dynamics
无限维动力学的近似
  • 批准号:
    1115408
  • 财政年份:
    2011
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Standard Grant
Lattice Differential Equations and the Computation of Stability Spectra
格微分方程与稳定谱的计算
  • 批准号:
    0513438
  • 财政年份:
    2005
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Approximation of Lyapunov Exponents
FRG:合作研究:李雅普诺夫指数的近似
  • 批准号:
    0139824
  • 财政年份:
    2002
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Standard Grant
Approximation and Computation of Lyapunov Exponents, Global Errors, and Functional Traveling Waves
Lyapunov 指数、全局误差和函数行波的逼近和计算
  • 批准号:
    9973393
  • 财政年份:
    1999
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Standard Grant
Research in the Department of Mathematical and Computer Science at the Colorado School of Mines
科罗拉多矿业学院数学与计算机科学系的研究
  • 批准号:
    9732069
  • 财政年份:
    1998
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Standard Grant
System Identification and Nonlinear Wave Equations for the Modeling of Soil Properties
用于土壤特性建模的系统辨识和非线性波动方程
  • 批准号:
    9721424
  • 财政年份:
    1998
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Standard Grant
Mathematical Sciences: NSF-CBMS Regional Conference on the Numerical Analysis of Hamiltonian Differential Equations
数学科学:NSF-CBMS 哈密顿微分方程数值分析区域会议
  • 批准号:
    9633686
  • 财政年份:
    1997
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Standard Grant

相似国自然基金

一种新型的PET/spectral-CT/CT三模态图像引导的小动物放射治疗平台的设计与关键技术研究
  • 批准号:
    LTGY23H220001
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
关于spectral集和spectral拓扑若干问题研究
  • 批准号:
    11661057
  • 批准年份:
    2016
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目
S3AGA样本(Spitzer-SDSS Spectral Atlas of Galaxies and AGNs)及其AGN研究
  • 批准号:
    11473055
  • 批准年份:
    2014
  • 资助金额:
    95.0 万元
  • 项目类别:
    面上项目

相似海外基金

Spectral theory of Schrodinger forms and Stochastic analysis for weighted Markov processes
薛定谔形式的谱论和加权马尔可夫过程的随机分析
  • 批准号:
    23K03152
  • 财政年份:
    2023
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spectral analysis of micro-resonant PDEs with random coefficients
具有随机系数的微共振偏微分方程的谱分析
  • 批准号:
    EP/X01021X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Fellowship
Development and spectral analysis of an ensemble machine learning model using quantum chemical descriptors
使用量子化学描述符的集成机器学习模型的开发和光谱分析
  • 批准号:
    23K04678
  • 财政年份:
    2023
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spectral analysis of quantum graphs and its application to quantum expanders
量子图谱分析及其在量子扩展器中的应用
  • 批准号:
    23KJ1270
  • 财政年份:
    2023
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of a dynamic spectral analysis method based on metabolic kinetics
基于代谢动力学的动态光谱分析方法的开发
  • 批准号:
    23H01994
  • 财政年份:
    2023
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Exploring the Structure near Black Holes using Millisecond Timing, Spectral X-Ray Observations, and Advanced Data Analysis Techniques
使用毫秒定时、光谱 X 射线观测和高级数据分析技术探索黑洞附近的结构
  • 批准号:
    22KJ1431
  • 财政年份:
    2023
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Harmonic analysis techniques in spectral theory
谱理论中的谐波分析技术
  • 批准号:
    EP/X011488/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Research Grant
SANHTA – Spectral ANalysis for High Temperature Applications
SANHTA — 高温应用的光谱分析
  • 批准号:
    10060878
  • 财政年份:
    2023
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Collaborative R&D
Early-Generation Photochemical Oxidation Products of Isoprene Under Low-NO Conditions:Aerosol Formation Potential and Structural Assignments by Ion Mobility Mass Spectral Analysis
低 NO 条件下异戊二烯的早期光化学氧化产物:通过离子淌度质谱分析确定气溶胶形成潜力和结构分配
  • 批准号:
    2304669
  • 财政年份:
    2023
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Standard Grant
Optimization of light throughput in portable spectral analysis instrumentation
便携式光谱分析仪器中光通量的优化
  • 批准号:
    571703-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 15.08万
  • 项目类别:
    Alliance Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了