Lattice Differential Equations and the Computation of Stability Spectra
格微分方程与稳定谱的计算
基本信息
- 批准号:0513438
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-15 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator and his colleagues consider issues in the approximation of solutions of differential equations. Differential equations are commonly used to model physical and biological phenomena in many areas of science and engineering. A differential equation is a rule, a relationship between the solution and its derivatives, that determines how an initial configuration evolves into future configurations. The focus of this project is on the approximation of Lyapunov exponents and related quantities that provide information on stability, the tendency for nearby configurations to evolve nearby, and instability, the tendency for nearby configurations to move apart, and on the analysis and computation of lattice differential equations, i.e., differential equations that are discrete in space and continuous in time. Much of this work emphasizes the blending of rigorous analysis with practical implementation of algorithms. This research has as a central theme: the combination of dynamical systems and numerical analysis ideas together with the modeling and analysis of differential equations. Discrete models play a prominent role in the modeling of physical and biological systems. Of particular interest are traveling wave solutions of lattice differential equations. Sacker-Sell and Lyapunov spectral intervals are natural analogues of the real parts of the eigenvalues that provide stability information for time-varying differential equations. The investigator develops, analyzes, and justifies the use of numerical techniques for the approximation of these spectral intervals. A suite of computational modules for the computation of stability information and for functional traveling waves is being developed. It is backed by analysis of the numerical techniques in a form that should prove useful to working scientists and engineers.
这位研究人员和他的同事们研究了微分方程解的近似问题。在科学和工程的许多领域中,常用微分方程来模拟物理和生物现象。微分方程是一条规则,是解与其导数之间的关系,它决定了初始构型如何演变为未来的构型。这个项目的重点是关于Lyapunov指数和相关量的近似,它提供了关于稳定性的信息,附近组态在附近演化的趋势,以及不稳定性,附近组态移动的趋势,以及格点微分方程的分析和计算,即在空间上离散的和在时间上连续的微分方程。这项工作的大部分都强调将严格的分析与算法的实际实现相结合。本研究以动力系统与数值分析思想相结合以及微分方程的建模与分析为中心主题。离散模型在物理和生物系统的建模中扮演着重要的角色。格点微分方程行波解是特别有趣的。Sacker-Sell和Lyapunov谱区间是为时变微分方程提供稳定性信息的特征值实部的自然类似。研究人员开发、分析并证明使用数值技术来近似这些光谱间隔是合理的。一套用于计算稳定性信息和函数行波的计算模块正在开发中。它以对数值技术的分析为后盾,这种形式应该被证明对工作的科学家和工程师有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erik Van Vleck其他文献
Projected Data Assimilation using Sliding Window Proper Orthogonal Decomposition
使用滑动窗口适当正交分解的投影数据同化
- DOI:
10.1016/j.jcp.2024.113235 - 发表时间:
2023 - 期刊:
- 影响因子:4.1
- 作者:
Aishah Albarakati;M. Budišić;Erik Van Vleck - 通讯作者:
Erik Van Vleck
Erik Van Vleck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erik Van Vleck', 18)}}的其他基金
The Midwest Mathematics and Climate Conference
中西部数学与气候会议
- 批准号:
1445371 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
The Central Region Conference on Numerical Analysis and Dynamical Systems
中部地区数值分析与动力系统会议
- 批准号:
1211934 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Approximation of Infinite Dimensional Dynamics
无限维动力学的近似
- 批准号:
1115408 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Numerical Spectral Analysis and Approximation of Functional Traveling Waves
函数行波的数值谱分析和近似
- 批准号:
0812800 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Collaborative Research: Approximation of Lyapunov Exponents
FRG:合作研究:李雅普诺夫指数的近似
- 批准号:
0139824 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Approximation and Computation of Lyapunov Exponents, Global Errors, and Functional Traveling Waves
Lyapunov 指数、全局误差和函数行波的逼近和计算
- 批准号:
9973393 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Research in the Department of Mathematical and Computer Science at the Colorado School of Mines
科罗拉多矿业学院数学与计算机科学系的研究
- 批准号:
9732069 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
System Identification and Nonlinear Wave Equations for the Modeling of Soil Properties
用于土壤特性建模的系统辨识和非线性波动方程
- 批准号:
9721424 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: NSF-CBMS Regional Conference on the Numerical Analysis of Hamiltonian Differential Equations
数学科学:NSF-CBMS 哈密顿微分方程数值分析区域会议
- 批准号:
9633686 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Intersection Theory for Differential Equations
微分方程的交集理论
- 批准号:
2401570 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
- 批准号:
2342407 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
- 批准号:
EP/Y004663/2 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
- 批准号:
2349575 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
- 批准号:
2348846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant